Investigation on the validity of the heavy quark expansion for charmed hadrons

A talk by

Daniel Moreno Torres

on behalf of T. Mannel, D. Moreno and A. A. Pivovarov

October 7, 2020

Outline I

- 1 Introduction
- 2 HQE for the decay width
- **3** Basic assumptions
- **4** Phenomenological analysis of $\Gamma^{sl,e}(D_q)$
- **5** Phenomenological analysis of $\Gamma^{nl}(D_q)$
- 6 Conclusions

Introduction

The heavy quark expansion (HQE) provides an expansion in the inverse heavy quark mass

- has proven to be very successful for describing bottomed hadrons.
- applicability has often been questioned for charmed hadrons due to the charm quark is not so heavy.

Aim: We revisit the HQE for charm. In particular, we study pseudoscalar D-meson semileptonic (sl) and nonleptonic (nl) decay widths including available NLO QCD and subleading $1/m_c$ corrections.

Introduction

The HQE predicts

- Decay width mainly due to the free heavy quark decay (FHQD) (blind to the spectator quark) $\Rightarrow \tau(M)/\tau(M') = 1$.
- Sensitivity to the spectator quark appears at $O(1/m_Q^3)$ due to 4q operators, which introduce small differences between hadrons.

Look at the current experimental values for B-meson lifetime ratios¹

$$\left. \frac{\tau(B_s)}{\tau(B_d)} \right|^{\exp} = 0.998 \pm 0.006 \,, \quad \left. \frac{\tau(B^+)}{\tau(B_d)} \right|^{\exp} = 1.076 \pm 0.004 \,.$$

However, for D-mesons, the lifetime ratios are²

$$\frac{\tau(D^{\pm})}{\tau(D^0)} \bigg|^{\exp} = 2.563 \pm 0.017 \,, \quad \frac{\tau(D_s)}{\tau(D^0)} \bigg|^{\exp} = 1.219 \pm 0.017 \,,$$

which can not be undestood in the picture above (specially D^{\pm}). Can we trust the HQE for charm?

¹Values taken according to PDG and HFAG (see arXiv: 1405.3601). ² $D^0 \equiv D_u = c\bar{u}, D^+ \equiv D_d = c\bar{d}, D_s^+ \equiv D_s = c\bar{s}.$

Introduction

For charm, the normal counting in the HQE is broken

- The contribution from $\mathcal{O}(1/m_Q^3)$ 4q operators can be comparable or even exceeds the contribution from the FHQD.
- \blacksquare c-quark inside D-mesons does not decay freely, but it is very sensitive to the spectator quark.

The reason for this to happen is^3

- 4q operator coefficients are very large, they carry a $16\pi^2$ enhanced phase space factor.
- \blacksquare In B-mesons suppressed by $\Lambda^3/m_b^3\sim 0.001:$ highly suppressed.
- In *D*-mesons suppressed by $\Lambda^3/m_c^3 \sim 0.1$: not so highly suppressed.

Despite of this, the HQE is able to predict correct widths, at least in some cases. We focus on pseudoscalar *D*-mesons.

³The typical hadronization scale is $\Lambda = 500\text{-}600$ MeV.

HQE for the decay width

If $m_c \gg \Lambda$ then charm is a heavy quark and we can perform an OPE in $1/m_c$ (**HQE**) for the decay width (nl and sl)

$$\Gamma_{D \to X/X \bar{\ell} \nu_{\ell}} = \Gamma^{0} |V_{\rm CKM}|^{2} |V_{\rm CKM}'|^{2} \left[C_{0} - C_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{2m_{c}^{2}} + C_{\mu_{G}} \frac{\mu_{G}^{2}}{2m_{c}^{2}} - C_{\rho_{D}} \frac{\rho_{D}^{3}}{2m_{c}^{3}} - C_{\rho_{LS}} \frac{\rho_{LS}^{3}}{2m_{c}^{3}} + \sum_{i,q} C_{4F_{i}}^{(q)} \frac{\langle \mathcal{O}_{4F_{i}}^{(q)} \rangle}{4m_{c}^{3}} + \mathcal{O}\left(\frac{1}{m_{c}^{4}}\right) \right]$$

$$(1)$$

- factorized short-distance effects, called Wilson coefficients C_i , which can be computed in perturbation theory.
- non perturbative effects encoded in the matrix elements of local operators over hadronic states.
 - $\blacksquare \ \mu_{\pi}^2, \ \mu_G^2, \ \rho_D^3 \ \text{and} \ \rho_{LS}^3:$ matrix elements of two-quark operators.

• $\langle \mathcal{O}_{4F_i}^{(q)} \rangle$: matrix elements of four-quark operators.

where $\Gamma^0 = G_F^2 m_c^5 / 192\pi^3$, G_F is the Fermi constant and $V'_{\rm CKM} \to 1$ in Γ^{sl} .

Basic assumptions

Evaluation of matrix elements (**ME**) is a primary source of uncertainties⁴. We assume⁵

$$2M_{D_q}\mu_{\pi}^2 = -\langle D_q(p_D)|\bar{h}_v\pi_{\perp}^2h_v|D_q(p_D)\rangle \left\{ \begin{array}{l} 2q \text{ op.} \\ q\text{-indep.} \end{array} \right.$$

$$\left. \begin{array}{l} \langle \mathcal{O}_{4F_2}^{(q')} \rangle = \frac{1}{2M_{D_q}} \langle D_q | (\bar{h}_v q'_L) (\bar{q}'_L h_v) | D_q \rangle &= \frac{1}{8} f_{D_q}^2 M_{D_q} \delta_{qq'} \\ \\ \cdots \end{array} \right\} \begin{array}{l} \text{4q op.} \\ \text{VSA} \end{array}$$

 $^4 {\rm Since they can not be computed in PT, only in lattice, using sum rules, modelling... <math display="inline">^5 M_{Dq}$ is the D_q meson mass carrying spectator quark $q, \, f_{Dq}$ is its decay constant, h_v is the HQET field, q_L is a left-handed relativistic quark field and π_μ stands for cov. derivative.

Basic assumptions

Other assumptions are

- electron, muon, up and down quarks massless.
- m_s/m_c corrections only included in the LO term.
- \blacksquare We add up to $\lambda^2\text{-Cabibbo suppressed channels}^6$ i.e charm decays with flavour structure

• sl:
$$c \to q_3 \bar{\ell} \nu_\ell$$
 with $q_3 = s, d$.

- nl: $c \to q_3 \bar{q}_1 q_2$ with $(q_3, \bar{q}_1, q_2) = (s, \bar{d}, u), (s, \bar{s}, u), (d, \bar{d}, u), (d, \bar{s}, u).$
- Coefficients of operators up to dim 5 included at NLO (exept for μ_G^2 in the nl width).
- Coefficients of dim 6 operators included at LO.
- Coefficients of dim 7 four-quark operators included at LO only for the Cabibbo-favoured channel: $(q_3, \bar{q}_1, q_2) = (s, \bar{d}, u)$.

 $^{^6\}lambda=0.2257^{+0.0009}_{-0.0010}$ is a Wolfenstein expansion parameter in the CKM matrix.

Investigation on the validity of the heavy quark expansion for charmed hadrons <u>Phenomenological</u> analysis of $\Gamma^{sl,e}(D_q)$

Phenomenological analysis of $\Gamma^{sl,e}(D_q)$

The theory expression for the semileptonic width to electrons is

$$\begin{split} \Gamma^{sl,\,e}(D_q) &= \Gamma(c \to se^+\nu_e) + \Gamma(c \to de^+\nu_e) \\ &= \Gamma^0 \bigg[\bigg(1 - 8(1 - \lambda^2) \frac{m_s^2}{m_c^2} + \frac{4}{3} \frac{\alpha_s(\mu_c)}{8\pi} (25 - 4\pi^2) \bigg) \bigg(1 - \frac{\mu_\pi^2}{2m_c^2} \bigg) \\ &- \bigg(3 - \frac{\alpha_s(\mu_c)}{72\pi} \bigg(3(124 - 8\pi^2) - \frac{4}{3}(91 + 20\pi^2) \bigg) \bigg) \bigg(\frac{\mu_G^2}{2m_c^2} - \frac{\rho_{LS}^3}{2m_c^3} \bigg) \\ &+ \bigg(15 + 16 \ln\bigg(\frac{\mu^2}{m_c^2} \bigg) \bigg) \frac{\rho_D^3}{2m_c^3} \bigg] + \mathcal{O}(\lambda^4) \,, \end{split}$$

which is aimed to explain the experimental data

$$\begin{split} \Gamma^{sl,e}_{exp}(D^{\pm}) &= (1.02 \pm 0.02) \cdot 10^{-13} \text{ GeV} ,\\ \Gamma^{sl,e}_{exp}(D^0) &= (1.04 \pm 0.02) \cdot 10^{-13} \text{ GeV} ,\\ \Gamma^{sl,e}_{exp}(D_s) &= (0.85 \pm 0.05) \cdot 10^{-13} \text{ GeV} . \end{split}$$
(3)

Note that $\Gamma^{sl, e}(D^{\pm}) \approx \Gamma^{sl, e}(D^{0}) > \Gamma^{sl, e}(D_{s}).$

Investigation on the validity of the heavy quark expansion for charmed hadrons <u>Phenomenological</u> analysis of $\Gamma^{sl,e}(D_q)$

Phenomenological analysis of $\Gamma^{sl,e}(D_q)$

Observations:

• Four-quark operators (up to dimension 7) combine in \perp operators which vanish in VSA.

• The HQE predicts $\Gamma^{sl, e}(D_q)$ is independent of q.

- Fine to explain $\Gamma_{exp}^{sl, e}(D^{\pm}) \approx \Gamma_{exp}^{sl, e}(D^{0})$.
- Problem! No theoretically simple way to explain SU(3) violation i.e. $\Gamma_{exp}^{sl,e}(D_s) < \Gamma_{exp}^{sl,e}(D^{\pm}) \approx \Gamma_{exp}^{sl,e}(D^0)$. Possible explanations are
 - Violation of VSA.
 - SU(3) violation of ME of 2q operators.
 - dim 8 4q operators.

• Four-quark operators suppressed (cancelled) by VSA \Rightarrow semileptonic decay still dominated by FHQD, like in *B*-mesons. Investigation on the validity of the heavy quark expansion for charmed hadrons \square Phenomenological analysis of $\Gamma^{sl,e}(D_q)$

Phenomenological analysis of $\Gamma^{sl,e}(D_q)$

• We can fit experimental data for reasonable values of m_c ($m_c \sim 1.65$ GeV for D^{\pm} , D^0 and $m_c \sim 1.6$ GeV for D_s).

Figure: Red, blue and orange colors refer to D^{\pm} , D^0 and D_s , respectively. Bands stand for experimental data whereas curves for HQE theory predictions.

Investigation on the validity of the heavy quark expansion for charmed hadrons <u>Phenomenological</u> analysis of $\Gamma^{nl}(D_q)$

Phenomenological analysis of $\Gamma^{nl}(D_q)$

The theory expression for the nonleptonic width is⁷

$$\Gamma^{nl}(D_q) = \Gamma(c \to s\bar{d}u) + \Gamma(c \to s\bar{s}u) + \Gamma(c \to d\bar{d}u) + \Gamma(c \to d\bar{s}u)$$

$$= \Gamma^0 \bigg[\kappa (1 - 8(1 - \lambda^2) \frac{m_s^2}{m_c^2}) \bigg(1 - \frac{\mu_\pi^2}{2m_c^2} \bigg) + \dots \\
+ (C_1^2 + C_2^2 + 6C_1C_2) 16\pi^2 \bigg((1 - \lambda^2) \frac{f_D^2 M_{D^{\pm}}}{m_c^3} \delta_{qd} + \lambda^2 \frac{f_{D_s}^2 M_{D_s}}{m_c^3} \delta_{qs} \bigg) \\
- \frac{3}{2} (6C_1C_2 + C_1^2 + C_2^2) 16\pi^2 \frac{f_D^2 M_{D^{\pm}}}{m_c^3} \frac{2\bar{\Lambda}}{m_c} \delta_{qd} \bigg] + \mathcal{O}(\lambda^4) ,$$
(4)

which is aimed to explain the experimental data

$$\Gamma^{nl}_{exp}(D^{\pm}) = (4.19 \pm 0.06) \cdot 10^{-13} \text{ GeV},$$
 (6)

$$\Gamma^{nl}_{exp}(D^0) = (13.91 \pm 0.06) \cdot 10^{-13} \text{ GeV},$$
(7)

$$\Gamma^{nl}_{exp}(D_s) = (10.6 \pm 0.1) \cdot 10^{-13} \text{ GeV}.$$
 (8)

 Investigation on the validity of the heavy quark expansion for charmed hadrons \Box Phenomenological analysis of $\Gamma^{nl}(D_q)$

Phenomenological analysis of $\Gamma^{nl}(D_q)$

Observations:

- Contribution of dim 6 4q operators is negative.
- For D_s and D^0 dim 6 4q operators are suppressed (λ^2 -Cabbibo suppressed and zero in VSA, respectively) \Rightarrow FHQD is dominating, like in *B*-mesons.
- dim 6 4q operators in D^{\pm} are not suppressed and even exceed the FHQD \Rightarrow leads to the $\Gamma^{nl}(D^{\pm}) < 0$ catastrophe.
- The problem is solved by adding dim 7 4q operators, whose contribution is positive, and comparable to the FHQD.
- The D^{\pm} decay can not be understood as the heavy quark decaying "alone", but it decays "together with" the spectator quark.

 \square Phenomenological analysis of $\Gamma^{nl}(D_q)$

Phenomenological analysis of $\Gamma^{nl}(D_q)$

- Contribution from 4q operators correctly explain the hierarchy $\Gamma^{nl}(D^0) > \Gamma^{nl}(D_s) > \Gamma^{nl}(D^{\pm}).$
- Normal counting in the HQE spoiled in D^{\pm} , but we still get reasonable predictions.
- If the HQE is still reasonable, we can think of it as two series that converge separately, one involving 2q operators and the other involving 4q operators, with different exp. parameter⁸

$$\Gamma = \underbrace{\Gamma^{0}}_{FHQD} + \sum_{n=1}^{\infty} \begin{bmatrix} a_{n} \left(\frac{\Lambda}{m_{Q}}\right)^{n} \\ \geq 3\text{-body phase space in} \\ + \dim 7 \\ 4 \operatorname{q op.} \end{bmatrix} + \underbrace{b_{n} 16\pi^{2} \left(\frac{\Lambda}{m_{Q}}\right)^{n+4}}_{2\text{-body phase space in}} \end{bmatrix}$$

$$(9)$$

• The size of the 4q operators compared to the FHQD tells us how good is the HQE is the common sense, and if the reorganized version of the HQE is required.

⁸i.e. depending on the partonic phase space involved in the matching calculation.

Investigation on the validity of the heavy quark expansion for charmed hadrons \Box Phenomenological analysis of $\Gamma^{nl}(D_q)$

Phenomenological analysis of $\Gamma^{nl}(D_q)$

- We can fit experimental data for reasonable values of m_c ($m_c \sim 1.63$ GeV for D^{\pm} , $m_c \sim 1.68$ GeV for D^0 and $m_c \sim 1.63$ GeV for D_s).
- Greater SU(3) violation is required (inclusion of dim 7 4q operators for Cabbibo suppressed channels may improve it).
- For D^{\pm} dim 8 4q operators could be as important as μ_G^2 .

Figure: Red, blue and orange colors refer to D^{\pm} , D^0 and D_s , respectively. Bands stand for experimental data whereas curves for HQE theory predictions.

Conclusions

- We observe that the HQE may work for pseudoscalar *D*-mesons since making very basic assumptions we can fit experimental Γ^{sl} and Γ^{nl} reasonably well.
- However, large sensitivity to HQE parameters (ME, C_1 , C_2 , $\overline{\Lambda}$, m_c ...) together with large uncertainties in some of them make a quantitative study (and a definitive conclusion) very difficult.
- The HQE converges in the common sense (except for $\Gamma^{nl}(D^{\pm})$) due to ME of 4q operators are accidentally suppressed.
- In $\Gamma^{nl}(D^{\pm})$, ME of 4q operators are dominant and exceed FHQD contribution.
- $\Gamma^{nl}(D^{\pm})$ can not be understood as the *c*-quark inside the *D*-meson decaying freely with small corrections due to spectator quark effects.
- Instead, its decay can only be understood as the *c*-quark and the spectator *d*-quark decaying "together".

Conclusions

- We propose that the counting in the HQE must be redefined.
- However, it is not clear if we can rely on HQE in general, only in those cases where ME of 4q operators are suppressed (for instance, in D* they are not).
- There is no clear and simple source to explain the observed excess of SU(3) violation in widths.
- More insight could be obtained after including Cabibbo suppressed dim 7 4q operators, dim 8 4q operators and NLO corrections to μ_G^2 in Γ^{nl} .

Conclusions

Questions

Backup

Operators and non-perturbative parameters

$$\mathcal{O}_0 = \bar{h}_v h_v \,, \tag{10}$$

$$\mathcal{O}_v = \bar{h}_v (v \cdot \pi) h_v , \qquad (11)$$

$$\mathcal{O}_{\pi} = \bar{h}_v \pi_{\perp}^2 h_v \,, \tag{12}$$

$$\mathcal{O}_{G} = \frac{1}{2} \bar{h}_{v} [\not\!\!\!\!/ \pi_{\perp}, \not\!\!\!\!/ \pi_{\perp}] h_{v} = \frac{1}{2} \bar{h}_{v} [\gamma^{\mu}, \gamma^{\nu}] \pi_{\perp \mu} \pi_{\perp \nu} h_{v} , \qquad (13)$$

$$\mathcal{O}_D = \bar{h}_v[\pi_{\perp \, \mu}, [\pi_{\perp}^{\mu}, v \cdot \pi]]h_v \,, \tag{14}$$

$$\mathcal{O}_{LS} = \frac{1}{2} \bar{h}_v [\gamma^{\mu}, \gamma^{\nu}] \{ \pi_{\perp \, \mu}, [\pi_{\perp \, \nu}, v \cdot \pi] \} h_v , \qquad (15)$$

$$\langle B(p_B)|\bar{b}\psi b|B(p_B)\rangle = 2M_B, \qquad (16)$$

$$-\langle B(p_B)|\mathcal{O}_{\pi}|B(p_B)\rangle = 2M_B\mu_{\pi}^2, \qquad (17)$$

$$C_{\rm mag}(\mu)\langle B(p_B)|\mathcal{O}_G|B(p_B)\rangle = 2M_B\mu_G^2, \qquad (18)$$

$$-c_D(\mu)\langle B(p_B)|\mathcal{O}_D|B(p_B)\rangle = 4M_B\rho_D^3, \qquad (19)$$

$$-c_S(\mu)\langle B(p_B)|\mathcal{O}_{LS}|B(p_B)\rangle = 4M_B\rho_{LS}^3.$$
⁽²⁰⁾

Phenomenological analysis of $\Gamma^{nl}(D_q)$

The theory expression for the nonleptonic width is⁹

$$\begin{split} \Gamma^{nl}(D_q) &= \Gamma(c \to s\bar{s}u) + \Gamma(c \to s\bar{s}u) + \Gamma(c \to d\bar{s}u) + \Gamma(c \to d\bar{s}u) \quad (21) \\ &= \Gamma^0 \bigg[\kappa \bigg((1 - 8(1 - \lambda^2) \frac{m_s^2}{m_c^2}) \Big(1 - \frac{\mu_\pi^2}{2m_c^2} \bigg) - 3 \bigg(\frac{\mu_G^2}{2m_c^2} - \frac{\rho_{LS}^3}{2m_c^3} \bigg) + \bigg(15 + 16 \ln\bigg(\frac{\mu^2}{m_c^2} \bigg) \bigg) \frac{\rho_D^3}{2m_c^3} \bigg) \\ &+ \bigg(1 - \frac{\mu_\pi^2}{2m_c^2} \bigg) \frac{\alpha_s}{\pi} \bigg(2(C_1^2 + C_2^2) \bigg(\frac{31}{4} - \pi^2 \bigg) - \frac{4}{3} C_1 C_2 \bigg(\frac{7}{4} + \pi^2 + 6 \ln\bigg(\frac{\mu^2}{m_c^2} \bigg) \bigg) \bigg) \bigg) \\ &- 32 C_1 C_2 \bigg(\frac{\mu_G^2}{2m_c^2} - \frac{\rho_{LS}^3}{2m_c^3} + \bigg(\frac{7}{6} + \ln\bigg(\frac{\mu^2}{m_c^2} \bigg) \bigg) \frac{\rho_D^3}{2m_c^3} \bigg) \\ &+ (C_1^2 + C_2^2 + 6C_1 C_2) 16 \pi^2 \bigg((1 - \lambda^2) \frac{f_D^2 M_D \pm}{m_c^3} \delta_{qd} + \lambda^2 \frac{f_{Ds}^2 M_{Ds}}{m_c^3} \delta_{qs} \bigg) \\ &- \frac{3}{2} (6C_1 C_2 + C_1^2 + C_2^2) 16 \pi^2 \frac{f_D^2 M_D \pm}{m_c^3} \frac{2\Lambda}{m_c} \delta_{qd} \bigg] + \mathcal{O}(\lambda^4) \end{split}$$

which is aimed to explain the experimental data

$$\Gamma^{nl}_{exp}(D^{\pm}) = (4.19 \pm 0.06) \cdot 10^{-13} \text{ GeV}$$
 (23)

$$\Gamma^{nl}_{exp}(D^0) = (13.91 \pm 0.06) \cdot 10^{-13} \text{ GeV}$$
 (24)

$$\Gamma^{nl}_{exp}(D_s) = (10.6 \pm 0.1) \cdot 10^{-13} \text{ GeV}$$
 (25)

Note that
$$\Gamma^{nl}(D^0) > \Gamma^{nl}(D_s) > \Gamma^{nl}(D^{\pm})$$
.
⁹where $\kappa = 3C_1^2 + 2C_1C_2 + 3C_2^2$ and Λ comes from $M_D = m_c + \Lambda + \mathcal{O}(1/m_c)$. 21/18

Ratios

Figure

Ratios

Ratios

