AST (RON Netherlands Institute for Radio Astronomy

Science Data Centres for Radio Astronomy: from LOFAR to SKA

Michiel van Haarlem Head of NL SKA Office @SKA_NL **Y**

Monday 13 January 2020

The Science Cloud – Towards a Research Data Ecosystem for the next Generation of Data-intensive Experiments and Observatories

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Square Kilometre Array in Australia and South Africa

SKA Headline Science

- Pulsar Surveys and Timing Study of Gravitational waves
- Cradle of Life and Astrobiology How do solar systems form and where could life emerge?
- Galaxy Evolution and Cosmology How do galaxies get their gas and form stars?
- Cosmic Magnetic Fields When did ordered magnetic fields in galaxies form
- Cosmic Dawn and Epoch of Reionisation When did the first galaxies form and begin to reionise the Universe
- Radio transients and Exploration of the Unknown
- Full Science Case available at: http://bit.ly/SKA_Science_2014

Michiel van Haarlem / 13 January 2020

Exploring the Universe with the world's largest radio telescope

SKA1-mid - the SKA's mid-frequency instrument

Location: South Africa

Frequency range: 350 MHz to 14 GHz

How SKA1-mid compares with the Janksy Very Large Array (JVLA), the current best similar instrument in the world.

SKA1-low - the SKA's low-frequency instrument

Frequency range: 50 MHz to **350 MHz**

How SKA1-low compares with the LOw Frequency ARray (LOFAR), the current best similar instrument in the world

Maximum distance between stations:

>65km

25% 8x 135x the survey speed

SKA1 MID - the SKA's mid-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

www.skatelescope.org 🚦 Square Kilometre Array У @SKA_telescope 💦 You Tube The

SKA1-Mid in South Africa

SKA1-Low in Australia

AL 1814 B. 101

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

f Square Kilometre Arra

9 @

Shire of Murchison:

- 50,000 km² Size of the Netherlands
- · 0 gazetted towns
- · 29 sheep/cattle stations
- 110 population

ake Macleoo

Carnarvon

Boolardy Lease (385 000 hectare:

Geraldton

SKA First Stage Processing

Parametric Model Pipelines

• Real-time imaging pipelines

- Ingest: receive and pre-process visibilities from CSP
- RCAL: real-time calibration
- FastImg: fast imaging for slow transient detection

• Batch imaging pipeline

- ICAL: iterative self calibration (including direction-dependent calibration)
- DPrepA: preparation of continuum image data products
- DPrepB: preparation of coarse spectral image data products
- DPrepC: preparation of fine spectral image data products
- DPrepD: preparation of calibrated averaged visibilities data products (EoR projects)

Non-imaging pipelines

– Pulsar search and timing, single-pulse transient detection

Advanced European Network of E-infrastructures for Astronomy with the SKA AENEAS - 731016

Observatory Data Products

- Image data products
 - Image cubes
 - Gridded visibilities
- Non-image data products
- Science Data Model more on this in a moment
 - Calibrated averaged visibilities (designed for EoR) projects)
 - Transient source catalogue
 - Pulsar timing solutions
 - Sieved pulsar and transient candidates
 - Transient buffer data

Functions of SKA Regional Centre

SKA REGIONAL CENTRES

SKA Regional centres will provide a platform for data access, data distribution, post-processing, archival storage, and software development.

DATA DISCOVERY ARCHIVE

Michiel van Haarlem / 13 January 2020

DISTRIBUTED USER SUPPORT INTEROPERIBILITY DATA PROCESSING

Credit: Joshi & Scaife

12

Regional Centre Functionality

Data Discovery

- Observation database
- Associated metadata
- Quick-look data products
- Flexible catalog queries
- Integration with VO tools
- Publish data to VO

- Reprocessing and calibration
- High resolution imaging
- Mosaicing
- Source extraction
- Catalog re-creation
- DM searches

Michiel van Haarlem / 13 January 2020

Data Analysis

- Multi-wavelength studies
- Catalog cross-matching
- Light-curve analysis
- Transient classification
- Feature detection
- Visualization

SKA Regional Centre Steering Committee AST(RON)

- SKA Regional Centres.
- Support, Commonality and Resource Management
- resource allocation process, access through IVOA services

Members: Quinn, Peter (Chair, Australia), An, Tao (China), Barbosa, Domingos (Portugal), Bolton, Rosie (SKA), Chrysostomou, Antonio (SKA), Conway, John (Sweden), Gaudet, Séverin (Canada), van Haarlem, Michiel (Deputy Chair, Netherlands), Klockner, Hans-Rainer (Germany), Andrea Possenti (Italy), Simon Ratcliffe (South Africa), Scaife, Anna (UK), Lourdes Verdes-Montenegro (Spain), Vilotte, Jean-Pierre (France), Wadadekar, Yogesh (India)

SRCSC Mission: to define and create a long-term operational partnership between the SKA Observatory and an ensemble of independently-resourced

SRC High Level Functions: Data Flow, Data Processing, Data Curation, User

Some Key Principles: data placement driven by optimising science, integrated

Design and specification of a distributed, European SKA **Regional Centre to support the astronomical community** in achieving the scientific goals of the SKA *EC Horizon 2020* (\in *3 million*) 13 countries, 28 partners, SKAO, host countries, e-infrastructures (EGI, GÉANT, RDA), NREN's Advanced European Network of E-infrastructures Three year project (2017-2019) for Astronomy with the SKA

- Computing and Processing Requirements
- Data Transport and Optimal European Storage Topologies
- Data Access and Knowledge Creation
- User Services

Final deliverable: preliminary ESDC Design and Implementation Plan

WP2: ESDC Design & Governance,

Survey of Potential Providers

- Over 50 expressions of interest
- Mixture of scientific institutes, infrastructure providers, and industrial partners
- ESDC Requirements based on those developed by SRCCG
- Final deliverable: preliminary ESDC **Design and Implementation Plan**
- User input needed!

Michiel van Haarlem / 13 January 2020

Sweden

- Analysis of compute load, data transfer and data storage anticipated as required for SKA Key science
- Suggested solutions to address exp of the key software areas associated with running a distributed ESDC
- Initial System Sizing

Reprocessing and post-processing

Processing is being examined in terms of (1) compute load; (2) memory requirements; (3) potential for distribution; (4) suitability of platform.

Minimum for HPSOs ~13 PFlops

Michiel van Haarlem / 13 January 2020

WP3: Computing and Processing Requirements

Storage estimates for HPSOs

10 ExaBytes over first 15 years of SKA operations

Michiel van Haarlem / 13 January 2020

- Surveys of Astronomical Facilities and of their User Communities
- Gap analysis
- Recommendations on the design of user interfaces
 - for data discovery, access, and retrieval
 - data processing, re-processing, analysis and visualization \bullet

Michiel van Haarlem / 13 January 2020

Tools overview CASA MIRIAD VO 60% 20% 40% 0% Data editing/calibration Data visualization Data analysis

the user community and user applications.

- Authentication and Authorisation Infrastructure
 - Federated Access for Research
 - **Exploration of Technologies**
 - **Proposed AAI Architecture**
- Framework for designing and implementing a Service Portfolio for the ESDC and SKA
 - validate users' requests for data access;
 - keep accounts of computing and storage resources for each user or user group;
 - minimize data movement between sites.

AENEAS results

Available through web site: <u>www.aeneas2020.eu</u>

Key Project Findings

Deliverables & Milestones

Presentations

SKA Regional Centres (SRCs)

Michiel van Haarlem / 13 January 2020

News & Announcements

A new treaty paves the way forward for the Square Kilometre Array

Mar 13, 2019 | News

Representatives from the founding member states of the Square Kilometre Array gathered i Rome yesterday to sign a treaty establishing the SKA Observatory as an intergovernmental organization that will oversee the delivery and operation of the world's largest radio... read more

A step closer to a comprehensive design for the European SKA **Regional Center**

Mar 12, 2019 | News

The AENEAS team gathered at the Universit Manchester last week for its 4th all-hands meeting. In addition to the usual project updates and presentations on regional center activities beyond Europe, much of the meeting was dedicated to focused discussions that ... read more

AENEAS and SKA collaborators convene in Manchester, UK

Feb 15, 2019 | News

The AENEAS team is convening to Manchesker, UK for the 4th all-hands meeting on March 5-7. Along with the usual updates from team members, contributed talks by colleagues at the SKA office and partners from other SKA regional center, the meeting will... read more

Norderstedt

🥊 Potsdam

Onsala

Irbene

Bałdy

🖲 Łazy

Borówiec

The International LOFAR Telescope (ILT)

Europe-wide radio interferometry array Operating at 10-270 MHz 38 stations in the Netherlands 14 stations in Germany, France, Sweden, United Kingdom, Ireland, Poland and Latvia

LOFAR Science Products

- Velocity (Raw data rates of ~13 Tbits/s, correlated ~10 TB/hr)
- Volume (100 TB visibilities, 1 TB cubes, 1 PB catalogues)
- Variety (raw telemetry, uv data, beam-formed data, 2D-3D-4D-5D cubes, RM cubes, light-curves, catalogues, etc.)

Michiel van Haarlem / 13 January 2020

AST(RON

- Jülich and Poznan

Michiel van Haarlem / 13 January 2020

SKA Regional Centres

- Receiving ~600-700 PB of SKA data per year from ~2027
- Major effort required to prepare using pathfinder data
- Funding these plans may be a challenge
- Global initiatives and collaboration essential
- Integrates well with European Open Science Cloud
- Expect great new scientific opportunities (e.g. multi-messenger)

The Square Kilometre Array

