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Electronic Vision(s)
Kirchhoff Institute of Physics, Heidelberg University
Founded 1995 by Prof. Karlheinz Meier (†2018)

1995 HDR vision sensors

1996 analog image processing

2000 Perceptron based analog neural networks: 
EVOOPT and HAGEN

2003 First concepts for spike based analog neural 
networks

2004 First accelerated analog neural network chip with 
short and long term plasticity: Spikey

HAGEN: Perceptron-based 

Neuromorphic chip

introduced:

• accelerated operation

• mixed-signal Kernels

SPIKEY: spike-based Neuromophic

chip

introduced:

• fully-parallel Spike-Time-
Dependent-Plasticity

• analog parameter storage for 
calibratable physical model
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Prediction

Perception

Action

• continuous time

• low latency







Xherdan Shaqiri
bicycle kick EM 2016

> 100 Watt

20 Watt

100 – 200 Milliseconds





The human brain is the ultimate cognitive system

• 100 billion 
neurons

• 10000 
connections per 
neuron (synapses)

• power 
consumption of 
the brain 
(approx.): 20 Watt
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Neuromorphic Computing
Subproject 9 of the HBP

Subproject Leader: Steve Furber

Deputy Leader: Johannes Schemmel

• Neuromorphic Machines

• Algorithms and Architectures for 
Neuromorphic Computing

• Theory

• Applications



What is neuromorphic computing ?

Implement relevant aspects of

structure and function

of biological circuits

as analog or digital images

on electronics substrates

Structure

Cell Cores (Somas) – Networks (Axons and Dendrites) –

Connections (Synapses)

Function

Local Processing – Communication – Learning



Brain-Inspired Computing
Bio-inspired artificial intelligence (Bio-AI)

future computing based on 
biological information 

processing

understanding biological 
information processing

numerical model : digital simulation

represents model parameters as binary numbers :

→integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

→ voltage, current, charge

need model system to test ideas

neuromorphic computing : 
model networks of neurons and synapses

modeling possibilities:
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Neuromorphic systems worldwide – State-of-the-art and complementarity

Many-core (ARM) architecture

Optimized spike

communication network

Programmable local learning

x0.01 real-time to x10 real-time

Full-custom-digital neural circuits

No local learning (TrueNorth)

Programmable local learning (Loihi)

Exploit economy of scale

x0.01 real-time to x100 real-time

Analog neural cores

Digital spike communication

Biological local learning

Programmable local learning

x10.000 to x1000 real-time

TrueNorth

Biological realism

Loihi

Ease of use



Principles of neural communication

action potential (“spike”)

neurons

synapses

output spike

neuron threshold voltage

membrane voltage

• neurons integrate over space and time

• temporal correlation is important

• kind of mixed-signal system: action potential ↔ membrane voltage

• fault tolerant

• low power consumption → 100 Billion neurons: 20 Watts 



BrainScaleS : Neuromorphic computing with physical model systems

Consider a simple 
physical model for the 
neuron’s cell 
membrane potential V:

( )VEg
dt

dV
C −= leakleakm

Cm

R = 1/gleak

Eleak

V(t)

→ accelerated neuron model
dt

dV

dt

dV

VLSIbio



continuous time
• fixed acceleration factor (we use 103 to 105)

no multiplexing of components storing model
variables
• each neuron has its membrane capacitor
• each synapse has a physical realization



Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 
neuromorphic chip

• 180 nm (generation 1) or 65 nm 
(gen. 2)

• 24 calibration parameters per 
neuron

• modular structure
• full set of ion-channel circuits 

for each dendrite



Nature + Real-
time

Simulation Accelerated Model

Causality Detection 10-4 s 0.1 s 10-8 s

Synaptic Plasticity 1 s 1000 s 10-4 s

Learning Day 1000 Days 10 s

Development Year 1000 Years 3000 s

12 Orders of Magnitude

Evolution > Millenia
> 1000 

Millenia
> Months

> 15 Orders of Magnitude

TimeScales



BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks

- AdEx neurons with very high synaptic imput count (> 10k)

- Wafer-scale event communication

single chip wafer module hybrid system

BrainScaleS-1 multi-level architecture
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Wafer-Scale Integration : 

BrainScaleS-1

114.000 
dynamic 
synapses 

512 neurons 
(up to 14k inputs)
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Wafer Module
wafer beneath 
heatsink

power supplies

48  communication 
modules

host links 

neuromorphic
microchip

19“ rack-based version currently under development (including fully integrated analog readout)



BrainScaleS
machine room
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Stochastic model example: sampling from multiple neural Boltzmann machines
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neurons

autonomously

reproduce

learned

distributions

no software! 

?
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Hardware

Software

BrainScaleS-1 : 
Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical 
computing system 
performing autonomously

but

Turing-based computing is 
used in multiple places:

• training

• system initialization

• hardware calibration

• runtime control

• input/output data 
handling
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Analog neuromorphic computing is a massive 

software-development task

BrainScaleS statistics:

• > 300 git repositories

• > 1000 open change-sets in Gerrit

• > 1000000 lines of code

• several hours build-time 

• multiple servers doing Jenkins-based CI every night, 

including hardware-based tests

• 10 HBP wide CodeJams and lots of smaller Hackathons



Shortening the hardware – software loop :
Analog neuromorphic system as coprocessor

memory
controller

high-bw link

NOC high-bandwidth link:

vector unit → NM core

• weights

• correlation data

• routing topology

• event (spikes) IO

• configuration

processor
vector unit

analog 
core

high-bw
link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

special function tile:

• memory controller

• SERDES IO

• purely digital function unit

Network-on-chip:

• prioritize event data

• unused bw for CPU

• common address space 
for neurons and CPUs
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• 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)

• 128k synapses

• 512 neural compartments (Sodium, Calcium and NMDA spikes)

• two SIMD plasticity processing units (PPU)

• PPU internal memory can be extended externally 

• fast ADC for membrane voltage monitoring

• 256k correlation sensors with analog storage (> 10 Tcorr/s max)

• 1024 ADC channels for plasticity input variables

• 32 Gb/s neural event IO

• 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2 (BSS-2) ASIC
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BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

N
M

D
A

Ca

Na
NMDANMDA

• sequential processing of all 
layers

• analog vector-matrix 
multiplication

• ReLU activation function
with 4 to 8 bit resolution

• speed mostly limited by
external memory

6 bit direct readout
of activations

input data BSS-2 ASIC

DCNN example : Alexnet



BrainScaleS-2

● 8Gbit/s raw bandwidth 

between BSS ASIC and 

host

● Latency < 300ns

● Event rates up to 250MHz 

real-time (250kHz bio) full 

duplex



Outlook : Edge-computing with BrainScaleS

FPGA
LPDDR

P
IC

E 
x4

LPDDR

BrainScaleS ASICs

M2 formfactor
event-based direct IO

• neuromorphic detectors

• neuromorphic sensors

• event-based cameras

• bio-sensors

• etc

M2 standard with PCIE x4

• backplanes and server

• pre-processed sensor data

• NM accelerators

image from C. Cao, https://doi.org/10.3390/environments6020025

feature extraction with pretrained DCNNs
classification : - spike based with online learning

- activation based (pretrained)

network structure :



Training deep networks with time-to-first-spike coding

J. Goeltz et. al, „Fast and deep neuromorphic learning with time-to-first-spike coding“, arXiv:1912.11443

https://arxiv.org/abs/1912.11443
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Learning and plasticity

✓ biological relevant neuron model
→ Adaptive Exponential Integrate and Fire (AdExp)

✓ biological relevant network topologies
→ more than 10k synapses per neuron

✓ high communication bandwidth for scalability
→ wafer-scale integration

Trivial solution: everything is pre-computed on the host-computer

• requires precise calibration of hardware

• takes long time (much longer than running the experiment on the accelerated system)

Better approach: hardware in-the-loop training

• makes use of high emulation speed

Biological solution : Integrate some kind of learning or plasticity mechanism

• local feed-back loops, aka training, adjust system parameters

• no calibration of synapses necessary → learning replaces calibration

• plastic network topology

Problem:
how to fix millions of parameters

• network topology

• neuron sizes and parameters

• synaptic strengths



Complexity of synaptic plasticity is key to biological intelligence

Protein-protein interaction map (…) of 

post-synaptic density

“Towards a quantitative model of the post-synaptic 

proteome”

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

Protein complex organization in 

the postsynaptic density (PSD)

“Organization and dynamics of PDZ-

domain-related supramodules in the 

postsynaptic density”

W. Feng and M. Zhang, Nature Reviews NS, 

10/2009

• > 6000 genes primarily

active in the brain

• high percentage of 

regulatory RNA

• evidence for epigenetic

effects in plasticity
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BrainScaleS-2: Hybrid Plasticity
• analog correlation measurement in synapses

• A/D conversion by parallel ADC

• digital Plasticity Processing Units can access
– synaptic weights (𝜔)

– configuration data (adr)  → structural plasticity

– neuron voltages and firing rates

analog

physical model

digital

numerical model

plasticity takes 

place at the 

synapse

processor

vector unit

analog core

high-bw
link

cacheNOC



Stabilizing firing rates with spike time dependent plasticity

Wall-time per trace: 200ms 

→ acceleration factor of 1000

David Stöckel, Master Thesis, 
Heidelberg University, 2017

presynaptic membrane potential

Dt = tpost – tpre

postsynaptic membrane potential

time
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256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
unpublished work, 2018

256

32
if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

Experimental example : structural plasticity
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256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
unpublished work, 2018

if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

dots represent realized (active) synapses
ten target groups (with three dendrites each) 

trained simultaneously
1.5 s wall time needed for emulation

Supervised learning using Hybrid Plasticity



256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
unpublished work, 2018

if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

dots represent realized (active) synapses
ten target groups (with three dendrites each) 

trained simultaneously
1.5 s wall time needed for emulation

Hybrid Plasticity

allows simultaneous rules for:

• strucutral optimization

• homeostatic balance

• pre-post correlation

and more

using software running in 

parallel to the analog neuron

operation

Supervised learning using Hybrid Plasticity



• analog computing is feasible

• model biology for neuroscience

• cost and energy efficient inference of DCNNs

• edge computing (sensor data preprocessing)

• works best if closely coupled to SIMD CPU

• Software-based implementation of learning algorithms

• learning can include calibration

• supports hyper-parameter learning (L2L)

• initialization

• configuration

• debugging

• calibration

• future considerations

• find the optimum hybrid (digital vs. analog) system for a given technology

• replacing CMOS will be very difficult (>20 years from now)

• CMOS is good enough, but cost might be prohibitive
→ efficient in-memory computing needs large amounts of silicon

What I have learned
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Workshop: March 17-20th 2020

Tutorials: March 20th 2020

Neuro-Inspired 
Computational Elements

Workshop

NICE 2020
March 17 - 20th 2020

Heidelberg  - Germany

Kirchhoff Institute for Physics

Picture: fotolia.com / Sergey Borisov




