IVOA Registry
DOl application

VOTable, FITS
Code to Data
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Daiquiri - Python based framework for the publication of scientific
databases

A. Galkin, J. Klar, K. Riebe, G. Matijevic, H. Enke

At Leibniz Institute for Astrophysics Potsdam (AIP) we host, curate
and publish terabytes of astrophysical data using the Daiquiri
framework. Dedicated web applications allow scientists from all
around the world to run SQL queries via the web interface or scripted
access and get their desired data in reasonable time. In the last two
years, Daiquiri was completely re-written in Python and received
major updates - upload of VOTables, VO TAP support and many more

features. Daiquiri has been developed in close cooperation with

scientists and having support for collaborations in mind. All

components are Open Source software and available on GitHub.

The Daiquiri package enables collaborations and institutions to create
customized websites. The new framework architecture splits the
application into different layers, so user, job and queue management
can be developed and maintained as separate packages. It is based
on the Django framework in Python and utilised the Astropy Python
package. This facilitates the integration of special modules for
individual projects into the Daiquiri applications, such as the Cut out

service in MuseWIDE. The Queryparser Python package translates

the queries from ADQL to the backend SQL. The access permissions

are checked depending on user accounts and groups.

Data services @AIP, proudly powered by Daiquiri — an open source software
for publishing scientific data, based on Python, developed at AIP

Daiquiri has many features, just to name a few: an interactive query interface, asynchronous database Quernes, visualization tools, an IVOA compliant cone
search AP and a registry of registries implementation, metadata and user management, UCDs Support, a cut-out AP| for data cubes, a contact form, DOI
Integration, an OAI PMI interface for harvesters, a meeting module and an integrated Wordpress for the documentation

The role of the data curators

The tools we use and develop to publish the scientific datas are based on the

long ye
diverse
web ap

ars of experience and knowledge of people. They curate

astronomical datasets, design and develop the softwar
plications in close collaboration wi
Curators and research softw
the wnplememmg of the F
stewardship

e tools
th the scientists. The role of

AlR Principles for scientific data m

Links
You are welcome

Daiquiri on GitHy
Docker selup hit

10 try out Daiquiri as a provider:
b htlps:ﬁmthub.com!diangu-tlaiqtnni

ps'.Hglmub‘comfdjango-ualquirudalqulrl-dncker-cnmpose

Data services @AIP
Scientific archives
Gaia@alp hips:/igaia aip.de

::HPPLAUSE archive hitps:/fwww plate-archives org
useWIDE I1ups-.H'~‘\Mw.musznde.alp.ﬂn

powered by Django Daiquiri

and publish the

are engineers has become even more crucial with
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A new multi-band optical im:
Magellan 6.5 m tel
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Anendt Motivation

We present a new image reduction pipeline for PISCO, the Paraliel Imager for Southern ]

CO&J??rﬂ!ng Observations, attached 1o the 6.5 m Magellan telescope at the Las Campanas While superb and cost-expensive (2lescopes and

Observatory (LCO), Chile, PISCO obtains simultangous g, 1, |, Z band Images with 0.2° cameras havq beenm an associated high hdelity

pixel size and 5° x 8' field of view image _ledutl:lﬂfl Pipe&ﬂe for an efficient commaon
usage is yet missing - often due to budget saving.

Our pipelne package perfoims all basic standard reduction steps on the raw images of Therefore, even within a part of a PhD thesis like

each CCD and coects for several instrumental effects. We apply astrometry, construct here, it became necessary to develop such a

deep co-added images in each band and implement photometric calibration, We show the p|pe||_n¢. We Invite PISCO pbsam to leam from

procedure of reducing LCO images from raw data 1o the final results and illustrate the our pipeline and to save multiple efforts

quality of our data reduction by comparison with Hubble Space Telescope (HST) imaging.

Special emphasis is placed on a high-fidelity photometric calibration. This is indispensable Acknowledgements

far our research purpose to study the evolution of galaxy clusters around 3C radio sources sh CHA. for help with the
In the early universe (z > 1 ). For a typical data set with 20 exposures of 120 s duration, g&ommﬂ;}m%m@z 5TScl
the reduction allows for the reliable detection of faint sources down to r = 26 mag. Far for providing us With the LST source 531;3109 Tor
seven 3C fields, a cross-match with HST catalogues in a 2' x 2* field of view demonstrates mmmq

the exceptional depth and significance of our source catalogue. :

Reduction pipeline Science Achlevement

e 0bs ft i
g:;pu:-}::;::g 133(:'122 Lze:lifﬂshiczf‘f]gs%m.?;sq:‘nj::,ee?ma Ll el Candidate galaxies al the redshift of the 3C source are selecied by magnitude and color cuts:

Flc. 7: Color Magn“ude DIEWEH'HS LCO BCISS, 71 388 O - 2" ; LCO MCPSS. po i 358 3O - &
(CMDs) of the 3C255 field for 4
bins on the distance from the 3C
itsell. Top left: < 307, top right

30" — 60°, bottom left: 60° — 90°
bottom right: 90" - 120”

The candidates are selected by

23 < 1 =< 26 (red dofied lines)

To distinguish between red and
blue candidate galaxies, a color
cutr —z = 08 is applied (blue
solid line). Black symbals are
excluded as fore- and background
S0Urces,

The number N of candidates and
Fig. 1: Multi-fiter Fig. 2: Single r band image Fig. 3: Final r band image with their surface density SO are given.

raw image mosaic  afler bias, dark and flatfield a 4'x 4' FoV. It is combined of For the CMD selected galaxy candidates we calculate the galaxy overdensity (OD), L.e. central

for g, r, i, 2 The comection. The background 21 singhe exposures of 120 s (= 307) surface density minus surounding surface density in the annulus 807 - 120", To study
anrangement level shows a step between The seeing is ~0.8" measured the evolution of galaxy overdensities between redshift 1 and 2, we sort the 3Cs by redshift and
contains 8 CCDs,  left and nght CCD. It is further by the mode of the FWHM of

i calculate the cumulative overdensities (at 1 < z < 2, 30" cormesponds to =250 kpc). This is done
two for each filter corrected by our pipeline all isolated round sources. for blue and red candidates separately

Fig. 8: Cumulative overdensities of CMD
selected candidates. The x-aws is the index
of the 3C fields soned by redshift

Red sources show OD between redshift 1
and 1.4: for the cosmological evolution this
means thal red ODs are not found in the
earlier universe al 2 > 1.5 and stari to show
upatthe epochofz - 1.4

T B

Blue galaxes show on average a negalive
0D (i.e. underdensity) for all redshifts from
2=2wz=1

This means thal blue star lorming galaxies
are ubiquitously lound in the outskirts

blus sources)
1

A e L - 3C sources
Fig. 4. images of 3C255; lefc Pan-STARSS r-band, middle: PISCO r-band, right: HST FGOEW.
Tn“e- red u‘.:?ezn and blue circles :nmk o radius of 5°, 30" and 55° around 3C255. The deep LCO data comoborate the results on the evolution of red palaxy overdensities around
J high redshift 3C sources found by Spitzer + PanSTARRS (Ghalfar et al. 2017). The LCO Images
are also wide enough to clearly reveal the ubiquitous central lack of blue galaxies.

PISCO Data quality

Fig. 5: log(N) - mag histogram. — e SEREEE Fig. 6: Pholometric comparison with HST LCO#E05,x.y.llg#546,626.0
The detection limit is taken as the 0
magnitude at which 98% of the sources Cross-maiched Spectral Energy Distribution n_match = 1
are brighter (SED) of a faint {r = 26 mag) and red galaxy In -
. | the fiekd of 3Ci.255 Colored circles dcr::Ie HST/LCO F606 = 1.01
The detection mit of our PISCO data (r - . ' PISCO griz bands, black crosses show HST
6 mag, red dotted hne) is about 4-5 FB06W and F140W from Kotyla et al (2016)
than that of Pan-STARRS and the black diamond / upper limit give
SpitzerIRAC photometry (Ghafan et al 2017)

The blue dashed ine shows & linaar iy

w the logiN) mag histogram. The The source maich is urique within 0.5™ and the °
mit (blue solid line) and Nux rabo HST | LCO@FGO6W is close 1o 1. on | L

J s fraction (> 90%) are | average 1.003 +/- 0.06 for the entire sample,

ed relative 1o the extrapolation of h 8 '2'0 N _2;' = 3‘0‘— demonstrating the high quality of eur LCO

L
M [ AB mag 1 photomedry Wavelength | pum |

-

log N | arcmin
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n in G327 : A 3D Approach

Monc Peler3chilke

*We used 20 contour analysis to
detact the outflows in G327.

*In Fig! we can see biue and red
shifted outflow distribution.

*in ail around 20 outflows were
found which we can see in green
in Fig 2 showing their direction.

* Method was not efficient spedially

in most crowded regions 1o
assign anddatadoum Figure 4 mannlmmnmmmnmwunm'wnwn Fojrams.
Figu 1 Rt 2 bl st Cantons i S0 Dvriayed *We need altemative methods to

owme ALMLASATLASGAL sontineur. reen bnes whom detect outflows.
arecinn of e outhoe ant i jelos s Pe cordeus
T G SeRaT

= T =

Results : Using 3D method

EWl.

Figure 8 X

outhore iobar
*We needed to disentangle the
outflows in order o gel a complele
picture of all the outflows
* A 3D conversion of ALMA dala was Figure T 5 arty sl

one of tha solut we found
*We could detect around 43 out

which is twice the number which we

Position Angle : Monte Carlo Simulati

got using 2D :
*We dr

su

gions for

* The outflow di
be concluded us

of the subregions

Qutflow Detection in 3D : Method

Wa fo

outflows an

* The
param
® The |

Link for 3D model and Virtual Reality : hitps/sketchfab.com/3d-models/2g327-sio-colored2-b510a2f1 1b14471a8908afb0179e19



Searching Pulsars Using Neural Networks 3
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Introduction

Pulsars are rotating neutron stars which can be observed by faint

1€ pulsations, While pulsars * 2

400
|

can be used for the study of a multitude of astrophysical phenomena, finding new pulsars is not 1 triv e *

1al task due 1o their faintness, the modulation of the pulse period by binary compamons and the vast s00

parameter space of possible dispersion measures (DM) and pulse periods. The DM of o pulsar, which ¥ *
introduces a dispersive delay to the pulses, is not inherently known which forces current approaches = * *
1o blindly dedisperse the data at a range of different DM values Analysing these DM trials results in o ‘_- mr;.‘- - *
huge amount of pulsar candidates which are mostly the result of radio Irequency interference (RFT) or z g‘:’* *

other forms of noise. These candidates have 10 be classified subsequently, Quickly ¢ lassifying pulsar by 20 * *

observations becomes more and more impaortant since new pulsar surveys will not be able o store VR 3

ill observations| 1]. We propose a pipeline based on neural networks that is able w directly elassify 260 G

survey observations with greal confidence and can be trained in an end-to-end mnnes

14! 1o T T
FEA SN Dodisparsion FFA SN Newrsl hiet Chas |

Main Points

LA convolutional neural net is able 1o directly detect pulsars in survey observations
. The neural network is sensitive 1o arange of different DM values (currently 80

persing part of network has (wo output channels which contain the
respectively.

impanison of the SN of real pulsar olservations in the d

pensed Lime serics

100). The dedis-
low and the high bm pulsars

neural network. Right: Same Comparison between
Wik

il il pud chanmels of the

st of the noural

3 = The noural network is able 1o find the majorits oF the real pulsars in the test set without false posi
1. The neural network is trained on unasceelerated pulsars with periods between 20 ms and 650 ms ok !

tives, The best clussifier of the individual classifiers is the clussifier based on the FFA Only the very
ased on nesult of the fast Fourier transform (FFT), short-time Fourier Lrans- Taint pulsars clude the network. Our classifiers only ificant signal in the
form (STFT) and fasi folding algorithm (F FA)2) FEA/FFT/STFT. In the case of faint pulsars w:n,.r; resulting from noise may reach a similar strengih
5. The output of the dedispersing part of the network, the intermediate time series, can be investigated as the pulsar signal. These pulsars could still be detecte
intermedinte lime series, since these

4. The elassification is b

ke o aceount the most «

d using traditional search techniques in the
using comventional technigues techniques create multiple pulsar cundidates per observation
6-The network is trained using a combination of real survey noise and simulated pulsirs,

The simulated pulses are scaled

down during training by a factor 1 /N whic
training

ch decreases during

g . Known Pulsar

iy m— No Known Pubsar
& Current input size: 14 x 400 0K 0.8 &0

s0
Architecture a0/
The dedispersing part of the network is based on 1D convolutions, Ta reduce the data volume strided o S o

Classifier
convalutions are used in the first layer of the nerual network. In subsequent Layers dilated convolu- STFT Clasaifior 0
Bons provide a sufficient re live field FFA Classifier 10
The classifying part of the network combines the predictions of several individual classifier which Combined Classifier

are based on the FFT, STFT or the FEA The gradicnts can propagate freely through the FFT and %) o4 s ¥ 15 R e e 10
STFT which allows end-to-end training Recall

Clasaification Kesult (Pulsir Probaoisty )

) 3 Flgiire 3 Leit: Proci recall curve of * containing real peban. Right Hissogram of
a the classilication result for atl observations in the o s
3
]
B
2 . :
Conclusions
- o
3 ® Uur neural network model (s able 10 dedisperse pulses with a wide range of possible DM valies
§ without knowing (he DM
a ® Using neuryl nets o dedisperse filicrbank dug allows us (o reduce the number of time sermes which
o
_,J 2 have 10 be classifie | subsequently
Intermediate —= 2, 100 00
= Al d (I n ® Very faint pulsans which elude our ¢lassiflers can still be detected i the intermdiate e series
; I s with traditional search technigues
Classifier 2 s ;. ® Our classifiers are able 1o dote e the majority of our test polsars without false P ES
FFT g ® Training the clussifiers provides ueful gradients for e (esining of the dedispering part of the
= petwork
—
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uaversir  Metadata and User-Provided_Data
SELEFELD - |n the LOFAR Long Term Archive
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Data challenge LOFAR Metadata in the LOFAR LTA (Long Term Archive)

Across Europe, 52 stations of the Interna-
tional LOFAR Telescope (ILT) produce a con-
tinuous data stream of up to 200 Gbps in
total. This data is transported via a fibre-
optics network to central facilities in Gronin-
gen in the Netherlands. For some stations,
this means that data travels more than 1000
kilometers. Al incoming data is correlated in

While the data itself is distributed on the three and every processing step that has been ap-
LTA sites (see left), the metadata for discovery plied to create each particular dataproduct. To
and data access is kept in a separate catalog ensure that metadata is correct and valid, each
database and describes each dataproduct and SIP gets validated against a rather strict and
its full provenance in detail. Since LOFAR is versioned schema before the data is stored
not static and new functionality is added over in one of the storage sites and the meta-
time, valid properties of metadata and the LTA data is added to the catalog database. Sys-

datamodel are a moving target. The LTA fol- tem changes are reflected in both an updated
real time and the result (up to 14 GB/sec) is

written to a large compute cluster where it
can be further pre-processed.

lows principles of the Open Archival Informa- version of the SIP schema as well as in the
tion System (OAIS) model to deal with this. database itself. New data has to be ingested
When adding data to the archive, the ILT con- based on the most recent SIP version, and ex-
trol software provides a Submission Informa- isting catalog entries are updated to contain all
tion Package (SIP) in XML format. It contains currently represented parameters.

information about the original measurements

Left: A small section of a SIP document
In XML format. It contains detailed infar
mation about a dataproduct and its prove-
nance. Right: An XSD schema defines
valid elements and properties according to
the underlying datamadel and SIPs must
validate agains! this schema before dala is

t‘ accepled for the archive.
The telescope consists of 38 Stations in the Netherlands,
6in Germany, 3 in Poland, 1 in France, Ireland, Sweden,
the UK, and Latvia. In ltaly, a further station will be byilt

Ingesting User-derived Dataproducts

User-provided derived dataproducts pose a version SIP. The users can then extend that
challenge concerning the Consistency and by programmatically adding processing steps
cross-linking of dataproducts in the LTA. When they applied to create the derived dataproduct.
a user processes data outside of ILT control Unique LTA identifiers can be linked to custom
and wants to add relevant dataproducts to the user-specific labels for reference by the provid-
archive, the user has to provide a valid SIP for ing user. We further provide tools to validate
it. It not only has to completely describe the and visualize the outcome on the use-end to
entire genesis of the new dataproduct, but has mitigate bouncing ingest requests due to incor-

1o correctly refer to any existing dataproducts reclly specified SIPs or nonsensical informa-
in the LTA that it was derived from. tion due to human error. Each catalog entry is
Each LOFAR stalion has two antenna types for difforent We provide services and Python modules (eur-  further associated with an identifier for the pro-
Imquency bands between 10 and 240 Mhe. rently in a pilot user stage) to request informa-

L [ e viding user to allow filtering in data discovery
To archive and serve its large and gro wing tion and LTA identifiers on the base data, which and for potential rollbacks.
. the ILT operates the LOFAR LTA is already known to the LTA, in form of a latest-

{long-term archive). In three physical lo-
calions (SURFsara in

COFAR Loay '

SXAMplo to demonairale the
base data intormation
@ new SIF for the derived dataproduct,
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PyParadise:
A simultaneous pipeline of stellar and gas kinematics

Man | Lam', Bernd Husemann?, Omar S Choudhury'. Anika

'Leibniz-Institut fir Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482
2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching

Summary

PyParadise is a state-of-the-art stellar population
synthesis code, which is based on the MCMC. It derives
stellar population, stellar kinematics. and gas kinematics
at the same time. In this poster, we present the fitting

results based on mock and observed data. We

also
compare our result to

some existed methods. and
conclude that our method is stable in velocity
measurement up to z~1.

Modules

\ .I;]_;m—li:;cur (MCMC) fit of kinematics |
| v, sigma, (h3, h4) I

' Linear (NNLS) inversion for stellar popul

ations
<age>, <Fe/H>, etc '

None-linear (MCMC) fit of emission lines
F, v, sigma

Spectral Fitting Example

UGC00005

I . Wavelenath (4)
|Observations|
— Fige wamples of LIGCI0003 spectrn from [

test_CBO9

mlam@aip.de
Beer' and C. Jakob Walcher?

Potsdam, Germany
b. Miinchen, Germany

Procedures

Original spectra
| t o
| Kinematics fit (Library 1) |
‘
]

|I Kac_:nm_ti_c;s' fit T{_l:_:hr@J T

| — ¢ .

_| Stellar populations fit (Libmr}'mj
v

Emission lines fit

Error Measurements (Bootstrap)

N times [ Random spectrum |

(..-»

Kinematics | || Stellar populations | | Emissions

' Means, Errors

e ——————

UnitTest Results




Exoplanet detection using Machine Learning

LUDWIG
MAXIMILIANS. |
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INTRODUCTION

We present a machine learning based technique to detect exoplanets using
transit method. In this approach, time series features are extracted from lig

curves and a tree-based classifier using a popular machine learning tool
‘XGBoost'. This model was able to correctl

in a light curve with an accuracy of around 85%.

Machine learning and deep learning techniques have proven to be very useful

in various areas of scientific research. We wo
methods to improve the conventional al
astrophysics today to detect exoplanets.

uld like to exploit some of these
Borithm based approach used in

METHOD

this analysis, we used 6000 light curves from the K2 mission, out of which
3000 light curves contained a randomly injected transit. From these 6000
samples, we used 4500 samples to train our model and remaining 1500
samples to evaluate its performance. We made sure ratio of light curves with
transit vs without them remains 1:1 in both test and training
prepared in the following steps:

For

We removed all known sources from each light eurve.

Removed 3o outliers (discrepant points like cosmic ray hits) and flattened
the light curves

After that, we randomly injected transits in half the cases.

We then performed a few additional steps to prepare the light curve

5 to be
used as inputs to our model:

We used popular time-series analysis library ‘“TSFresh’ to extract features.

For each light curve, we extracted 789 features. Mathematical formulation
and other details of these features can be found at:

Later features with constant values were dropped and undefined numbers
(NaNs) were interpolated. Finally, we were left with 706 features

These features capture information about the characteristics of a light curve
and used as input to our model

RESULTS

We processed our validation set of 1500 samples the
Previous section before using them to make inference from our trained model
Our validation set consisted of 752 cases with an injected random transit and
748 cases without it. The results on our validation set are

same way as described in

The model had a prediction accuracy of around 85 % i.e

It was able to
classify planet vs non-planet signal correctly in 85% of the cases

It was able to identify a transit light curves with a precision of 0.78

The model predicted only 72 false positives

The model also predicted 162 false negatives, where it missed the transit signal
but it is important to note that transits we

re injected randomly which resulted
In many non-detectable or special cases

* Cases where injected transit signal was weaker than noise -> low S/N ratio
* Cases with very low inclination angle for the given star -> Hard 1o detect

These cases will be rectified in t

‘& next version of training data. Above re
are summarised in Figure 1

the
ht

y predict whether a transit is present

set. The data was

Confusion Matrix

No Transil

True class

No Transit
Predicted class

Transit

Figure 1: Confusion matrix, describing perfarmance of the

machine learning model

CONCLUSIONS

Machine Learning methods have proven to be
science and technology where we
Cases, it even surpasses human pe
various images into different

> very useful various areas of
need to deal with large datasets. In some
rformance in certain tasks such as classifying
classes.

With the new data coming in with a rate higher than ever before we need
systems that can extract results
Conventional methods like BLS
deal with it.

5 while making judicial use of computing power

(box least squares) are not efficient enough to
The suggested method takes |

ess than a second to ¢ lassify 1500 samples. Th
methods

ese
are not only more efficient but more r

obust as well, this approach
can be easily extended to ¢ lassify

single vs multi-planet transit signals without
removing any previously detected transit sig

nals. Hopefully, this analysis
encourage the reac

ler to explore the capacity of machine learning and deep
learning methods to support the

Ongoing scientific research in their respective
dareas.
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Modern software can be adaptedts™
Create, preserve, and share the full
workflow from datj to publication!

Entering NeuLAND: Analysis work-
flow preservation for a fair FAIR

CHALLENGES H
* Data quantity growth s
v - - Integrate ML solutions?
g : piexity grow - preserve the workflow?
€am size grcthh . convey trust in results?
* Implement fair data principles
(findable, accessible,

IDEAS
interoperable, reusable)

* Code development
* Version control (git)
¢ Forking & Sharing
* Continuous Integration (Cl)

Can you simply share your
analysis scripts and expect
them to work, be compre -

) — Continuous Analysis
hensible, and useful? X

* Cloud infrastructure

* AWS, Azure, GCP exist
— Pilfer ideas & training
* Google Colab:

* NeuLAND (New Large Area — JupyterLab frontend +
Neutron Detector) for R3B Cloud computing backend
(Reactions with Relativistic « Data Science
Radioactive Beams)

*+ 2.5m x 2.5m x 3.0m active
plastic scintillator
« 6000 channels

« R3BRoot framework
steered with ROOT macros

« Machine Learning (ML) Foundations available, adopt
approaches to reconstruct existing software: _

- ; 3 Analysis-as-a-Service
events (interaction points)

r " Gl Habedu f rrevdtrums A T basrtresdor i g Cambdt {3 Fadveg |
o Jan Mayer, Andreas Zilges - {

University University of Cologne, Institute for Nuclear Physics .
qof Cologne jan.mayer@ikp.uni-koeln.de I

(Probably not)

EXAMPLE

» Many solutions exists

* Python everywhere

* ROOT modules work in
Python automatically
— Steer compiled software
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Introduction

The universitiy of Cologne’s Institute for Nuclear Physics oversees its

own computing and data storage fesources, operated and maintained
by master's and Ph.D. students,

This system has been established over the past 40 years with the
current storage system having been installed 15 years ago. During this
time continuous development and investments have led up to the

current sophisticated infrastructure.

However, developments in data acquisition and detector physics as
well as an increasing amount of collaborations have led to ever larger
amounts of data to be transferred, stored, and processed.

Computing
* Kronos and Thanathos:
* 56 core user servers for resource
intensive calculations
* Helios:
* 16 core user server mostly used as
access point
* Poseidon and Gaia:
* 32 core user servers for data analysis
* Hermes 1 and 2:
* Hosts for virtual machines providing
! services like:
| * DHCP, DNS, DB and identity
management
« Webpage and e-mail
* Experimental logbooks, shift
planning, etc.
* Athene 1 and 2:
* Storage managers (28 cores)
* Distribute data to the other servers
via infiniband (48 Gbit/s)
= Ares 1 and 2:
i * Virtual machine hosts for machines
used in data analysis
* Hades:
= Backup for essential services

Storage
* 2 fibre channel switches (16 Gbits/s)
* 5 storage controllers
* 4 HPE MSA 2040 (1 not operational yet)
* Support up to 7 additional disk
enclosures each
* Each supports 12 3.5" or 24 2,5 SAS
disks
* Disks arranged in RAIDS (+1 hot-
spare) volumes
* Enclosures communicate via 4 fibre
channel ports
* Total storage capacity of about 560 TB
(4™ MSA not included)
* Controllers can be expanded by 17
additional disk enclosures
* 4 storage controller will be usable
soon and will provide even quicker
access through solid-state-disks
* 1 DELL PowerVault 3600 for archiving
* Storage managed by two servers running
IBM’s General Parallel File System (GPFS)
* Uninterrupted power supply capable of
powering the system for about half an

hour
- High parallel performance

Assessment of the current state

Pros: Cons:

= Hardware allows for easy expansion during the next few years * Maintenance requires a lot of time N I

* Members of the institute have unlimited access to all resources * Supporting infrastructure, like the server room, not designed as suc !
* Very fast parallel storage access and large computing power * Potential for expansion limited

* Independence * Constant investments in new hardware required

» Cheapest short term solution since the hardware is already there = Adherence to fair-principles difficult

i . C / ections
| the available hardware can be easily expanded, there is no need to switch to a Cloud solution and comparatively slow internet connec s
o Iv lead to a decrease in overall performance. However, once the current hardware’s potential for expansion is exhausted, large
WAk TG e effort for malntaining the additional hardware will Increase drastically. Therefore, Cloud solutions will at some

investments will be required and the
point in time become more viable then the localized approach.

i
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Planetary engulfment as a possible explanation r 1
for observed high stellar

tation in metal poor main sequence stars L J

A.Oetjens and M. Bergemann and L. Carone
Max-Planck-Institute for Astronomy, Heidelberg
Ruprecht-Karls Universi at, Heidelberg

Abstract |Intr0ducti0n

The analysis of stellar rot:
method to deterr
Skumanich (19

ation, is a standard astronom

al | The aim of this work (s t
irs. Since the fundamental |

y analyze
tan lead to a stellar spin-up during the m

the ages o
onship t

t predicts that main sequence

- stars spin down as t <, this canonical méthod has been widely | A Kepler s ample of fast rorar

- - Ll 2 stars is st n below ik A —
used 1o provide a diagnostic of StENEF ages. HoWever Tecent About 10 % of themetalseer <tars are high rotators gy dLr ot
i tatio
advances in age tagging of stars by asteroselsmology have which would infer young ages when using shown are different initial rotation
revealed severe discrepancies with ages derived by

periods 4, § and 16 days
the PMS the star spins up due

gyrachronalogy, However, they are extreme metal
poor, and we kn: he ag < J5 ship
i we |10w:;mm,; \_'. e rnublalll‘ut\.. relationship radius contraction and a decrea
a by are P |
Fy are older than 8 Gyr (Bensby (2014)) contraction stops, the magnetized wind dom 3 d star |
spins down

| |
‘ |Conservatmn of angular mementum:

| In the case of close:

allETilg |
Byrochronology (e.g. Nielsen et al. (2015)). This work aims ta

provide an alternative scenario: The engulfment of a massive
planetary companion during the main sequence. The model
relies on numerical models for angular momentum evolution
(Bouvier et al. (1997)), tidal friction (Privitera et al. (2016
stellar spin-up (Carone (2012}). The model is applied to an
ensemble of synthetic star-planet configurations. It is found that
|the dynamical evolution of the star-planet system leads to a
{zradual spin-up of the main sequence star but the time it takes [ 3t a period of 2-8 days for orbital radii less than 0.1
for a planet to be engulfed by the star critically depends on the forque acting on the star spins up the star which cc

initial orbit, mass and metallicity of the system. In stark contrast R S e g e | Ieads to a reduction of the planetary orbit due to the i
with gyrochronology models, about 10 % of metal-poor old main conservation of angular momentum. (Carone et al. {20
sequence stars observed by the Kepler space mission exhibit :
very high rotation rates (Huber et al. (2014), McQuillan st al

d moment of

)), and

in extrasolar planets, the central star rotates |
| typically with a period of 10- 30 days, while the pla )

‘53' (2014)). This contradiction is explained naturally by the model of —_— "‘H\ The impact of the decreasing semi-
Jiflanetar\.- engulfment presented in this work. ;," B \\ major axis,also affects the rotation

- | velocity of the r
* \‘ We present a model that combines

the change of rotation velocity |
caused by magnetized winds with |
the effect of the tidal interaction

T g —_—-. =

Results

Fig. 4 shows the mass of the planetary companion as a function of the initial sami-major axis
| We compare 4 0.8 and 1 solar mass star at metallicities from - 2 < [Fe/H] <0
i The simulation start at the beginning of the main sequence and stop when the planet gets

I
S engulfed. When no engulfment occurs the computation ends at the main sequence turnoff |
3 - The metallicity of the star plays a key role in whether a planet gets engulfed during the main | =
3 sequence or not. For a given mass, stars with lower metallicities are larger, have smaller ’ -
i _E convective envelapes, and they also evolve faster on the main sequence. Tha computations
:! = =B show that this leads to a quicker engulfment and a higher stellar spin-up j
= z i el 2 — -
W v . | - ~ p— -
g 3 " . = . = —
- | Discussion
u
s h
E 2 8 ~ |Here, the Kepler target KIC 9024795 serves as example: From the age-metallicity refationship we |
2 !

~|know that the star, with metallicity of |Fe/H] = -1.5, should be older than 8 Gyr. it has a rotation
\| velacity of 26 km/s. With the gyrochronology approach the star is, even in the full range of
uncertainties, younger than 6.5 Gyr [Angus et al. (2019)). With the tidal-interaction model, a

| companion with 7-10 jupyter masses on an initial distance of 0.045 - 0.026 au, could have
caused this spin-up, as shown in Figs

=T T e T = B

:
0015 0020 0025 00300015 0020 0025 0030 I e
Initial sami-major axis [au] e

e 48 || X

Bt s s 8 g by o

The search for exoplanets delivered a lot of material during the past few years. lh""l!‘f‘::':lll:@:‘: |
| objects orbiting metal-poor stars on tight orbits & rather small though. The FT::T:n:f:mrw a
gertaln, as this might be an observational bias. Metal poor stars are usually l‘.\rl..‘ rn ey i
That not only makes them harder to observe in the first place, but it s alsa ma ».u‘-h iz S
detect arbiting objects. The model presented in this work serves as a first 3ppio <
srellar spin-up for metal-poar main sequence stars

To lude, tidal | ion and the engulfn ol & massive companion u:";‘r:::'ﬂ .
pmmnd parameter space, lead to stellar spin-up during the main wqumth. Mo

solves the paradox of age deviatlons from different methods, but also revea
gyrochronology ages can be misleading.
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When spectroscopic features, like Lyman and Balmer breaks, fall into a certain photometric band, they increase or
q L decrease the corresponding magnitude (Fig. 1). From this change we calculate so called photometric redshift
1l a l ] (phota-z) [1].
1] i |

There are two main methods of obtaining photo-z: Spectral Energy Distribution (SED) fitting, and Machine
Learning methods (ML) [2], SED fitting requires preexisting spectral templates, obtained from thecretical models.
ML instead requires repr Ive spectr-z ple for the investigated photometric catalog.

Both methods have their limitations and can outperform each other in different cases.

Fg L The princagle of photo-

T S

COSMOS2015 (3] is a photometric catalog for approx. 0.5 million galaxies with 0 < spectr-z < 8. _n-_
MLPQONA [4] is a ML algorithm for photo-z calculation, which showed good results on SDSS, KiDS, etc. [5,6].

SD55 DRI 10°% 002 002 01
Photo-z for COSMOS2015 produced with MUPQNA are much worse than in previous works (Tab. 1). The KiDS DR2. 104 002 003 03
probable reason s that spectr-2 catalog for COSMOS2015 was compiled from multiple catalogs from e
different instruments, and therefore is non-homogeneous. To fix this, we filter galaxies with non-typical
spectr-2 using SOM.

e ——

COSMOS2015 107 0.02 005 2

tab 1 Soeme of the iatatcal extimaton for MUPOMNA photo-1 for wrvwral catalogy

b s S

SOM algorithm projects a dataset from a multi-dimensional parameter space to the 20 map. SOM does it In such
a way that data points neighboring in the original space remain nelghbors on the map [7].

Photometrically similar galaxies end up being in the same or in the neighboring cells. They also should have
similar redshifts (Fig. 2), So we check spectr-z distribution within each cell and drop out outliers. In best cases it

lessens the percentage of outliers from 2 down to 0.25 and standard deviation from 0.05 te 0.023 (Fig. 3). The
effect on NMAD [s negligible,

Namiser of styaits [——— [T p—
8 o MO WILG WHO 5850 W00 0 N0 QWS LRG0 etE woes B jOne GRS SO0 MMES Wess Mn9
e —

o Ha e g prets
= D photes

= WD phets 2

o mdbars |3 ety

T
Thewhasd (st et

5 ] 15 ELl

Tig T SOM with post-tabseiled mean spectr.¢

Flg 3 The change of standand deveation, NMAD snd % of sutiien of resduals with 106€1-£ Fitaring thoeshakd

FEOAFSE photoniet ealiE R Aot S NS = o R s T e

In order to apply our trained ML model to the whole COSMOS2015 dataset, we must ensure that it Is
phatemetrically simifar of the spectr-z catalog that we used for training.

Usually it is done by cutting the tail of the distribution, but this is not very accurate.

Instead we place the whole catalog on the trained SOM and discard galaxies that differ significantly from
typical magnitude vectors of all cells. Magnitude distribution of the whole catalog becomes more like
magnitude distribution of train spectr-z catalog (Fig. 4).

SOM filtering of galaxies, atypical in terms of spectrz and phatometry, allows to significantly lessen g
number of outliers and ensure that both train and run datasets lay within the same area of the parametar J

space. In future, we plan to investigate the nature of the filtered outliers and to try outlier detection
methods for the same purposes.
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As we approach the Exascale era, it is important to verify that the existing framewaorks and tools will still work at that scale, Morsover, public Cloud compuling has

urgent camputing. Using the elasticity of the Cloud, we have put in place a pre-exascale HTCondor setup for running scientific simulation in the Cloud, with the chosen
This was not a purely demonstration run, but it was used to produce valuable and much needed scienlific results for the IceCube collabaration. In order to reach the ] A
models from many geographic regions across Amazon Web Services, Microsoft Azure, and the Google Cloud Platform Using this setup we reached a peak of over Slk GPUSs corre
\ntegrated compute of about 100k GPU hours. In this paper we provide the description of the selup. the problems that were discovered and overcome, as well a3 a short descriphion

.
Introduction

Multi-messenger astrophysics has developed into 3 full-Nedged observational aver the last 30 years
Current multi-messenger experiments, such as the IceCube Neutrino Observatory, require a large amount of
compute. With the exascale systems coming online in the coming years, “bursting” (quickly filling in gaps)
will become especially important for experiments 1o utilize spare capacity on these systems. Cloud
providers can provide us the scale to test whether experiments can utilize these resources effectively

Cloud Setup

IceCube Neutrino Observatory

=
3 - TR
E v - ———
>
— .
@ SR
v S -
O
o
o
= &
=
=3 "
[T} . ; >
3 A - - |
k- l m\ i = * Aggregated resources in 28 cloud regions across the globe
= alllll = = into single HTCondor pool
"&’; i "“ (| & + Tiered pool - Each region’s resources collected into a regional .
= e | pool and then joins global pool
2 o8 * Existing technology and expertise from Open Science Grid
= = + On the same scale as compute pools being run for IceCube,
CMS, LIGO, etc.
Science Case * Input and output data was staged to cloud storage in each

region - Reduce a source of complexity

Simple wrapper script to paper over differences in storage
APIs, location, etc.

* IceCube has broad science
case beyond neutrino
astrophysics

Universe opaque to light at
highest energies and large
distances

* Only gravitational waves
and neutrinos pinpoint to
most violent events in
universe

Ice produces large
systematic effects at
highest energy, esp. for v,

-

- _ Results
Initial setup tested using Number of GPUS. try Clovd Aegion aver time il

CPUs - Cheap |
* Network testing showed over ,.../

17Tbit/s networking inside a  §
region ;
* No single region or GPU type
contributed more than 11% in
compute effort

= B generations of nvidia GPUs

ooy
E]
1000y
.

- e e =
Murmites of Cloud inatamces aver tame imersi

and v, . * Geographical even split seena

* Improve event selection and 9  Best cost/science on newest ..

nointina resolution needs w e e e il ol GPUs (V100, T4) ;Es::::,:s,d w-J
Cost

Wallclock® =
Time

f
Conclusions . -
We have shown that IceCube can utilite exascale class resources for their P ion affe 1
- tn @ "Burst” mode This yielded the largest OPU resaurce pool every created in the cloud.
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UNIVERSITAT Machine Learning and Big Da... .
WURZBURG Cherenkov Astronomy

B.Schieicher and D. Dorner

Abstract: Being a data-intensive and analysis-intensive field, Cherenkov astronomy has several use cases for machine learning methods. For example, in the background suppression, it
can be used to differentiate between gamma rays and cosmic rays as primary particle of the shower that produced the observed Cherenkov light. Also for reconstructing the origin or the
energy of the events, machine learning can be applied. The challenge for all these use cases is that for training the methods, simulated data are needed. If the simulated events do not
describe the real data correctly, the machine learning methods do not provide equally good results on the real data. On the other hand, generative adversarial networks might help to
reduce the mismatch between real and simulated data. Furthermore, machine learning methods are interesting for the high-level analysis, e.g. for studying light curves and predicting the

behavior of a source. Therefore systematic studies of variability and periodicity can profit from machine learning approaches. The long-term goal is to predict the flux for variable sources
and coordinate multi-wavelength observations and studies based on this.

Overview of Imaging Air Cherenkov and Water Cherenkov Telescopes

—_ Big Data Challge
Example FACT:

| Total amount of physics data: >14720 hours —2.4 Mio Events
«Physics data per year: — 2500 hours — 0.4 Mio Events
St e —— «Data Rate: 5-10 TB/month — ~B0 TBlyear
-oDteryiory GOV ATATGcaiona/chi i

Air Showers

Simulated particle shower

Data Analysis
Data Flow

Machine Learning Use Cases
Tim Shoe ek s

+ ) Classification and Regression problems
| Image Cheanin . -le clas
Y st Particle classification

E .— T-wu‘_ﬂym = Reconstruction of shower origin

= Energy reconstruction

Can you guess the kind of the particie?

. | Train i | 1 ? Signal Amplitude
Detection Techniques k = ——
* Imaging Air Cherenkov Technique
*Water Cherenkov Technique

Indirect measurement
* Atmosphere part of the detector
— Air showers need 10 be included in simulation

Detector Response o
Example FACT nallenge:

Atmosphere is part of the detector—- Changes need to be
included n simulation :

Observational conditions

= Zenith distance

« ambilent light (2.9, moon}
« Star field

Atmospheric conditions

in the atmosphere (e.g. calima)
mal changes {(e.g. water vapor - t
it atch between real and simulated even
blg solution

ative adversary networks [10]

Poasible Solution
Talored Simulations — Large-scale computing nesded

Machine Learning on Multi-Dimensional Time Series

« Predict flares based on 10ng-term
light curves

« [nclude mutti-wavelength nformation
1o improve predictions

+ Long-tenm montonng andlor all-sky
coverape needed 10 provide training
sample

« Symulated light curves might help
but they shoild describe real light
gunvis well

= Camputing intensive

o : E ol Berysd-ad bl s s fuh- il si wes diuryd ohe
"
(A

Example FACT Data of Mrk 501 Mz
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Research

Experimental and Computing Infrastructures

Data Volumes
Fundamental particles, forces and symmetries

Some of the key questions in PAHN

neractions

< e o
WWn"~ baryonic

natler 15 only £

o of Lh& universe

s Nature of dark malter and dark energy

Close relations to astronomy and cosmology

hadron physics community |
llaborations

ant expenance in operatic

and data infrastructure:
rese ata. An axample s the WLCG, consisting of
more than 170 computing centres in 42 countnes.

R&D projects for future

several “smaller” ¢

&g MAMI, MESA, S-DALINAC

* Re-use of 5
and scian

partner consortia in NFDI

PAHN-PaN@NFDI:

an exemplary view

2 PAHN-PaN Consorti

FAIR Data Lifecycle Concepts and Open Daia

Professional Training, Education, Outreach

WP1: Tralning
Partiche, astrop radrandnuchear physics

+ Each arrow requires FAIR dats W el
maRagETanL g
[
= Edch alép nesds spprogeinie
PAHN-PaN goals o e

= Thi eyeia inehaes data.
mutadsta and worsfires

; . . m“_-“.*l‘mm
& + Tra lhecycls has 10 piveas 4
C [ eoudilf Joree s

sortium Pa
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Research in (astro-) particle physics and hadron physics
is spread all over Germany

Research centres

with

J A wiiting
- In b oF dats vedamas ind rates. Solitions
e —

sk (KET) I ot
(KHUK) r + NFDI i hatiure s
K s fiir Astrol (KAT) - [
Three committees pursue a joined NFDI approach el (=2 - » 4 o ;':‘_“_'_M,, P e Ve e
=3.300 scientists with PhD degree represented by HEWRS Al - : * 1 bt o et B Sy CrgeAes
PAHN-PaN NFDI consortium -

B e e o s s e L]

ESCAFE

PAHN-PaN needs from NEDI improve

d software, FAIR compliant data management, sustainability
PAHN-PaN contributes to NFDI: well

tested software, Big Data operational experience, know-how transfer via schools and outreach.
PAHN-PaM: Particle Astroparticle. Hadron & Muclaar Fhysica accelerios the NEDI




Astronomy meets big data:
Improving the Milky Way model with the billion-star surveyor Gaia

Kseniia Sysoliatina and Andreas Just

The ESA’s migsion Gaia has mopped about 1.6 billion of stars in the Milky Way (OR2,
mission. For most of these stors five astrometric parameters (positions, proper mc
additionolly contains radial velocities providing us with the full 60 dynamic informatio
these data strongly stimulate the development of existing Milky Way models, thus
Semi-analytic, physically and cbservationally motivated models of th
thick disks, halo, and bulge (TRILEGAL code, [2]), or derive the density profiles in a self
below). When combined with the data from large astrometric and spectroscopic survey
providing constraints on its star formation, dynamical heating, and chemical enrichm.

ne

2. The Galactic disk model

Just-Jahreil (JJ) model [5] is a chemo-dynamic model that concentrates on
the detailed vertical structure of the thin disk. It views the present-day thin disk
properties as a function of:

" - s
i ﬂsﬁﬂ-‘ the wart ...::-
= a declining star formation (SF) rate (SFR) with a recent SF outburst possible L | 1o oy
 a monotonously increasing power-law age-velocity dispersion relation (AVR) 5 = " Rights Vertic
« a four-slope broken power law initlal mass function (IMF) [B] : “ L - e
» 0 simpie enrichment law in the form of age-metalliicity relation (AMR). M S b MR, o
- :

Calibrated locally with the Hipparcos data [5] and SDSS star counts [7], and
tested recently with the RAVE DRS and Gaia DR1 data in the solar cylinder (8], VYo *
this model can be further improved with Gola DR2 (this work).

NG
3. Using Gaia DR2 data effectively

As many of the model parameters can be naturally correloted, the most robust way to find their best values is to
investigate full porometer space. An effective way to do this is to perform o paralielized MCMC sampling of posterior P - !

parametar values (Bayes' theorem).
Such a fitting cpproach Impeses a strong constraint on the maximum model-to-data comparison time for o single
combination of fitting porometers, which leads to special constraints on the data selection. We define mognitude

distribution; the latter characterses model-to-data goodness of fit and tokes into account our preliminary knowledge on a ‘ . ' .

complete dato samples de-reddened with the local extinetion mop [9] (obout 10° stars in totaly l

+ Sompeis of A-, F-, RC/RGB-stars, G- and K-dwarfs (Fig.2). For these stars we colculate:
» Vertical number denaity profiles (Fig.3, a) I =
+ W-velocity distributiona (Fig, 3, b; for subsets with known rodial velocities)

+All stars in o cone perpendicular to the Galatic plana with 10° opening angla. A significant fraction of this sample ore the
thick disk stars, so |t is used os on odditionol constraint on the thick disk parometers in the form of apparent Hess

diagrom (Fig.3, o).

== = — o = For all three typas of quantities (vertical profiles, velocity distributions, ond Hess d
' parform data binning, and thus reduce our data sample size from 10" (stors) to o
- -~ Ten porameters we choose to adopt ore:

- o = (0 Local wurfoce der
. Sereawtues (@) o Uy o) {thun chmi, ¥

Preliminary tests indicate that It might be difficult to reproduce all cbaery
ossumed fromework, such that on additi
altematively, this one-zone Galoctic model reoches the limit of it
Improvemantis can be ochieved by swilching on odditionol physical prc
migration (Sysakating and Just, in prep.) i

@5 Within the

Wl variation of IMF pa be requied;

- ond f

ther
uwCh a5 sledo

et R e —

v () To sum up, the efficlent explorotion of the parameter apace even of a relatively simple Goloctic
Pigraa v . S o i W oy A i B ot Han modal requires feduction of the large inltial catalogue 1o much smaller t of ita stotistiool
3 - waths properties
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The IceCube array: a detector for neutrinos from the sky

Cherenkov radiation track cascade

Deaplon
g e s
ol st pickod up by

&
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&
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-

> il uY

condry miin
how) thad s

o i iceCube

* sensors are aclivated in different patterns depending on the particla’s properties

* aim: determine type of particle (classification) as well as ils energy and direction
(regression) from observed patterns

« approximate translation invariance of patterns suggest use of convolutional neural
networks lo approach classification and regression tasks

3D Convolution Kernels

Re-arranging a hexagonal into a regular grid

20 Space
10 Tima

ID Space
10 Time

Network Architecture

11 convolutional liyes

Trus Meutvins Energy 1 [Gab]

Comparison of tha angular erors in
batween the CNN and a
method Thick hnes represent the median amon Lower i§ baltor,

b b

Graph Neural Networks
Theory
each of the n activated sensors becomes a vertex in a graph

edges represent closeness between vertices

« closeness between sensors i and j described by
trainable adjacency matrix A,

= can apply “graph convolution” to (# X &) input matrix X:

Graph Convolution
Spread(X) = AX||/X
GConv(X) = Spread(X)d, + @,

Performance
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Vinaling Wargy palbeine

Rocatvar operating curve for the task of idenily
lcaCube, Bassling is a conventionil ikeihood- Immd mthod
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Classification of high-resolution solar Ha spectra using t-SNE

Meetu Verma', Gal Matijevié!, Carsten Denker', Andrea Diercke'?, Christoph Kuckein', Horst Balthasar', Ekaterina Dineva'?,
loannis Kontogiannis', and Partha S. Pal'®

1 Leibniz-Institut fur Astrophysik Potsdam (AIP), Germany 2 Universitat Potsdam, Institut tlr Physik and Astronomie, Germany
3 University of Delhi, Bhaskaracharya College of Applied Sciences, Delhi, India

Abstract. Starting mid-2020, the Daniel K. Inouye Solar Telescope
(DKIST), 4-meter solar telescope will become operational. With five
post-focus instruments equipped with large format detectors, the
expected annual data rate is around 3 PB. Data include not only Two-dimensional histograms
images, but imaging spectropolarimetric as well as high-precision : o ”“iﬁmw (st
full-Stokes spectropolarimetric spectra. With this amount of data, it ; i

contrast (botom) profiles
will be impossible for astronomers to inspect each and every !

spectrum individually. We propose a framework to classity solar
spectra using t-distributed Stochastic Neighbor Embedding (t-
SNE) to speed up the basic spectral inversion. This study is based
on high-spectral resolution Ha spectra obtained with the Echelle
spectrograph of the Vacuum Tower Telescope (VTT) located at
Observatorio del Teide, Tenerife, Spain. The Ha spectral line is a

The distributions werg
divided by the number of
profiles (about 8.7 millon)
and are displayed on a
loganthmic scale between
10% and 10°. The red-while
dashed curves refer fo the
average Ha imensiy and

ey L L contrast profilas.
well-studied absorption line, revealing properties of the highly 2 J ' 20
structured and dynamic solar chromosphere. Typical features with
distinct spectral signatures in Ha include filaments/prominences,
bright active region plages, superpenumbrae around sunspots,

surges, flares, Ellerman bombs, filigree, and mottles/rosettes,
among others.

0.9 and belter. The color code /s based an the number of
to red), where a3 numbers are marked by couw tha

starting from the boffom. The location of extracted are marked on !
reconstructed Ha line-core intensity map. These are the regions, where the M.
can surely be inverted using cloud mode

2-D 1-SNE projection (leht) of 630 x 660 contrast profiles showing varous clusters. 2-0 -
SNE projection (right), colored using the linear and rank-order comelations when
comparing observed profiles with cloud model (CM) inversion, depicts o classes
One with contrast profiles (green) suttable for CM inversions and ancther with qeiat-Sun
and emission profiles (red), which cannot be inverted using CM inversion

ESNE is a machine learning algorithm, which is used for nonlinear
dimensionality reduction. In this application, it projects the Ha
Spectra onto a 2-D map, where it is easy to classify them according
10 results of Cloud Model (CM) inversions, |.e., optical depth,
Doppler width, line-of-sight velocity, and source function of the
Cloud material. Initial results of t-SNE indicate its strong
discriminatory power 1o separate quiet-Sun and plage profiles from
those that are suitable for CM inversion, In addition, the identified
classes are linked to chromospheric features, the impact of seeing
conditions on the classification is assessed, the projection of new
Ha spectral data (different observing time and target) onto the 2-D
1SNE maps is inspected to optimize CM inversions, and
fepreseniative Ha spectra are determined as Input for deep neural
netwaorks speeding up the CM inversion
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NuRadioReco and NuRadioMC.

A Soft s Fr . : ;
oftware Framework for the Radio Detector Community
=it

Christoph Welling for the RNO-G Collaboration

Web-based Event Viewer

> Use latest web technologies -‘__(-___‘_‘_E-_"__“‘—*

> Deployable lecally or online @ 0 127.00.1

Signal Generation
> Signal generated using state-of- €
the-art semi-analytic model ™~
> Support for older paramelrizations ~.
for cross-checks
> Treatment of LPM elongation

Event 1 >

ummary Traces Simulation

Signal Propagation Event Overvie

> Analytic ray-tracing through
medium with refractive index
nizl=n_—A e ™

> Fas! ray-tracing via C++
raytracing module

Draw Stations
AllOOnly selected

Datector Description
> Configuration & state of detector
> Time-dependent
> Detector database access
> Custom detectors in JSON
format

Detector Simulation

> Datector effects on signal
> Generic or measured noise
> Trigger simulation

Event Reconstruction
> Spiit into individual modules
> Write data to disk at any time

Design Goals & Philosophy

Experimental Background

> Targeting neutrinos at energies > 10 PeV
> First discovery-scale radio deteclor for neutrinos to
be built in 2020
> 35 in-ice stations in Greenland
> Radio to be part of lceCube Gen2
> Simulation & design studies ongoing
> Radio detection of cosmic rays is well established
> Cosmic ray signals valuable calibration

> Complete simulation and reconstruction
package
> Python-based
> Open Source / GNU
> Community-driven
| = Modular
> Flexible detector layouls
> Support most radio detector axparimants
> Far in-tce neutrino and cosmic ray detectors

source
> Accessible
| > Utilize GitHub workflow: Pull requests
issues, unil lests,
> Bulld on experience from previous experiments
Event Data

lormat

delociors

Deutsche

> Higrarchical structure of data objects

» Channal voltage and electnic field trnces
stored In dedicated classes

> Can seriplize itsoll into pickle-ike . mur

> Can be written 10 disk at any time |
> Can hald ndditonal data from other

Farschungsgemeinschaft

- noee@@E =
Time: 01. Jan
Station 101 - 2018
00:00:00
Cosmic Rays
Channel Traces

‘é

time [ns]

NuRadioReco Structure

> Detector Descripion

Provides information about detector

> Event Data
Stores measured raw data
Stores simulated and reconstructed quantities

> Modules:
Parform detector simulation and event reconstruction
Can manipulate event data
Can only read detector description

References

= C. Glasor ot al "NuRadioReco: a
Reconstruction Framework for Rado
Neultrino Detectors.” EPJ-C 79.6 (2018)
>, Glaser of al, NuRadioMC
Simulating the mdio smission of
from on o
arxiv:1906.01670, subvmitted to EPJ-C
* NuRadioReco on GitHub,
github. com/nu-radiNuRadioReco
> NuRadioMC on GitHub
github. comnu-radioNuRadioMc
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Prototypes for the Next Generation of

Computing Backends in Radio-Astronomy
T. Winchen, A. Bansod, E. Barr, M. Heininger, S. P. Sathyanarayanan, G. Wieching, J. Wu

Max Planck Institute for Radio Astronomy, Auf dem Hugel 69, 53121 Bonn, Germany

Mux-Planck-Institut
fir [{.‘uflu;u-{ﬂlnlll:!lil'

MeerKAT, South Africa
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| One Modular Backend-S

Backend compnsed of multiple services deployed in cluster with
high-speed network connected to telescope data stream

High-speed network

Data Transport

+ High-speed data network with RDMA,
(56GD IB, 100 GbE, ...}

« Telescope [ data products stream to
individual multicast groups

= Spead2 protocol (but also VDIF)

» Capture / send from ring buffer (dada)
via specialized programs.
mkrecy, mksend, wvdif aend

» Control applications based on m

client/server framework based on

* Manage buffers

= Start/stop sub-processes for

send, receive, process programs

= Load FPGA firmware

* Provide sensors for telemetry data
*Access [0 global data storage realized
as Redis key/value store

Control network

Data Processing
Telescope Connectors

* Multiple services for different data
= products, e.g. spectrometer, pulsar, vibi ...

= inerface to telescope e = " i
= Translation of telescope commands — X ESIS pé%,jsgi;gxy £

Lo internal katcp protocol, e.g, from < = . Dadé ring lﬁul‘fe: via ps

SCPI for Effelsberg ] : ; S s
- Connection to telescope data stream: ~ K, CUDA for GPU computing
* Only customized component —

Design Summary
Adaptability:

= Commensality:
> — Simult
i by master-controller
via kalcp
= Future Kubernet 1stead of Ansible? A5 Simplification
. NUMA management problematic

offline data processing

Minimize in-house solutions, Maximize reus
components and prefer COTS computing h
= + s
Resources

e =

it

* Future: Connection to control 7 —
= Maximize science / €
. Reduce development lima (=mos
?'I‘l.WE-Heraeus.sernmar.Januan,r 2020 Contact: twinchen@mpifr-bonn.mpg.de
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BoostNumpy: Big Data Processing in C++
with Python convenience

Martin Wolf martin.wolf@tum.de
Experimental Physics with Cosmic Particles (ECP),

| BoostNumpy | Technical University Munich, Germany

SFB 1258
rh Mattes

Me ers .

Efficient processing of big data can only be achieved with algorithms implemented in a compiled language like C++.
However, for convenient steering of these compiled algorithms an interpreted scripting Iangua%e-lika Python is desired.
This contribution presents the meta-pro e be

by utilizing the Boost.Python libi
management and processing.

Overview & Example

objects, i.e. numpy arrays.

rary [ﬁ

ramming library "BoostNumpy" that serves as interfac

tween C++ and Python

and the numpy software package [2] for high-performance big data storage

| The C++ function will be called for every entry in the given input numpy
BoostNumpy is an extension of boost::python to handle numpy arrays array. This also works for C++ class member functions:

in C++ code. It introduces the boost::numpy::ndarray class : bp: iclass_<. . .>(...) def (bn: :dstrean: tmethod(. . .));

derived from boost: :python::cbject to manage PyArrayType

This project is based on an implementation by Jim Bosch et. al. [3]. |
Schematic Data Flow

| The major development of BoostNumpy is the dstream, a.k.a. data
stream, sub-library for the vectorization of (scalar) C++ functions. It
implements the Generalized Universal Functions approach described
by the numpy community. BoostNumpy uses meta-programming
(MPL) to achieve the vectorization of a C++ function with only one line

of code.

Example:

#include <boost/python.hpp>
#include <boost/numpy/dstream.hpp>

namespace bp = boosat::python;
namespace bn = boost::inumpy;

double square(double v) { return vev; }

BOOST_PYTHON_MODULE(my _py_module)
i

bn:initialize();

bn::dstream: :def (
“gquare", ksquare, bp::arg(*v"),
"Calculates the square of v.");

}

The square function in Python will accept a numpy array as input and
will return a numpy array as output:

import numpy as ap
import my_py_module

|  in = pp.array((1, 2, 31)
out = my_py_module.square(in)

|
|

print (eut)
49

{1] D. Abrahams and R W. Gr

2] 5. van der Walt, S. C. Colb c :
) Computing u; Science & Engineering, 13, 22-30 (2011)

hitns //aithub com/ndarray/Boost. NumPy
(3} hitps:/ig

httpsi/github cc,n'nJn\nrlwnr‘ﬂou'itﬂumpv!

|| Conclusion
| BoostNumpy allows to operate on numpy arrays within C++ in an efficient, transparent, and easy way. Hence, copying of data batween Python and

In this schematic the function £ operates on the second axis and
iterates over the first axis of the input array. For the iteration numpy

broadcasting rules apply.

Input numpy array (in)
(3,2)-shaped 2D
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Multi-Threading
BoostNumpy supports multi-threading via the C++ pthread library. By
exposing a C+ function to Python using the

| bn::dstream: :allow_threads () option, the Python function gets
the additional optional keyword argument nthreads=1. Hence,
calculations can be distributed over several CPU cores.

————— E

|[‘I C++ becomes unnecessary and calculations can be performed on the data directly.
X - i —

References - =
osse-Kunstleve, Bullding Hybrid Sysiems with Boost. Python. C/C++ Users Journal (July 2003)
ert and G, Varoguaux, The NumPy Afray: A Structure for Efficient Numerical Computation
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Small Problems with Big Data in Astronomy

Oleksandra Razim', Kseniia Sysoliatina?
Department of Physics, Strada Vicinale Cupa Cintia, 21, 80126, University Federico Il, Napoli, Italy,

*Astronomisches Rechen-Institut, Monchhofstr. 12-14, 69120 Heidelberg, Germany

Pareto principle states that 20% of work takes 80% of time.
Data scientists say that data preparation takes 80% of their time
For astroinformatics it is common that data retrieval takes 80% of our time. It can require
weeks and months to find the right catalog, then to select only the data you need, then to
find out what are the meanings, corrections and errors of every column. Often it is almost
impossible without the help of someone who already worked with these data.
Then you have data preparation,
and then you have actual work.

Catalog search

Problem Solution

Muiltitude of non-unified and disconnected data search engines

Virtual Observatory

No “catalog of catalogs”

Uninformative catalog names

"I found
o]
Guidelines and templates similar of those for publications ===

standartization
No tradition on where to give catalog link in the papers

No guidelines on where and how to upload your own catalogs

Data interface

Problem

Complicated web-sites without site
maps

Solution
And how can |
dewnload it? User scenarios during

development phase

Search Interfaces with multitude of ADQL

P LU fields, but not the one you need Asynchronous download
XML Server v159 011 Code Erver 639UR2/IRIN / | !
Contax b the odmmsstrator i |

404 Errors Automated feedback forms

Formatting

Prablem Solutian BEADUTIEN
Today's task:
figure out the
FITS | New names af

. old columns. -

FormatsZ00: CSV, FITS, TXT, HTML, DAT, CAT...

ColNamsZ0O (Fig. 1)

Different NaN values, not specified in the header

Naming guidelines

Numerical columns read as strings “Read tests” in most

popular @
| Instruments, e.g.

Unreadable symbals in column names
eless J TopCat, Pythan, IDL o

Meaningless column names, &g, Coll; Col2, Col3 L T ¥
B z = -y

— Fig. 1, ColNamesZO0 of the of the 12 most popular
astromaetric, spectrascoplc and phatemetrlc stellar catalogs

T T
[Ty [ Raron0n

Sudden renaming of columns in a new data releases

e —

Oh, you know... Our
resgarcher ratired, mice eat

Reproducibility

Can we use your
code?
M=

S recover |t by New Year|

the hard drbve and our

Ingtitute refocated, 1o we lost

Problem
‘what remained. But we'll —

Solution

Mo code and data published

Plots/diagrams without source tables

“Better bad code than no
code” policy

Glt

Examples of typlcal user
scripts

Contacts

Alex Razim: sheranm@gmall com
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