Observing dwarfs
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Questions

How many dwarfs are there in the LG now?

How many dwarfs were accreted and when?
What are their masses” What were their masses”?
What are their mass profiles? Did they evolve?
What are their star-formation histories?”

Spatial anisotropy? Group infall?

What are/were their orbits?

MW vs M31

Your urgent question here



Contents of a dwarf

e Dark Matter

e Stars

e (3as

e Dust



3 dwarf types

dark matter up to 99% up to 99%

~1% ~1% up to 50%
gas/stars ~1/100 up to 10/1 up to to 20/1
rotation No Yes Yes
'\/
tidal stirring

(see e.g. Mayer et al 2001)






The three largest dwarfs




The three largest dwarfs







Classical dwart galaxies
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Invisible dwart galaxies
aka Ultra-Faint dwarfs
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8,000 times fainter 2,000,000 times fainter then 100,000,000 times fainter then
then the Milky Way the Milky Way the Milky Way
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How many dwarfs are there”



Theoretical predictions

e Current theory has a strong prediction as to the
total number and the Mass Function of DM Sub-
halos

e Current theory has no strong prediction as to the
total number and the Mass Function of Dwarf
Galaxies



Detection Methods



Dwart Detection Technigues

* Asresolved stellar populations
 As smudges on the images

* As smudges at the locations of HVCs*

*HVC=High Velocity Cloud, a compact HI gas overdensity moving differently to the Galactic foreground



Stellar over-density search

Signal/Noise

pioneered by Mike Irwin in 1994



Decision Making

Stellar Luminosity Function

10005

* Noise: smoothly varying
background and Poisson
statistics 100

e Signal: dwarf luminosity and
distance + survey limiting
magnitude

10f




False Positives

Background is not actually smooth!

Belokurov et al 2006



False Positives

Stars (Galaxies

Koposov et al 2008
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Detection. Major Players

All-sky imaging surveys



SDSS DRY7 11,663 sq deg ~20 satellites discovered




apres Sloan

PanSTARRS 30,000 sq deg

VST 2,700 sq deg |
. ~ p ~

2,100
1 T

/,

s dg D ES

f



Size vs Luminosity
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Size vs Luminosity
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Size vs Luminosity
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What is a galaxy”
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ABSTRACT

A growing number of low luminosity and low surface brightness astronomical objects challenge traditional notions
of both galaxies and star clusters. To address this challenge, we propose a definition of galaxy that does not depend
on a cold dark matter model of the universe: a galaxy is a gravitationally bound collection of stars whose properties
cannot be explained by a combination of baryons and Newton’s laws of gravity. After exploring several possible
observational diagnostics of this definition, we critically examine the classification of ultra-faint dwarfs, globular
clusters, ultra-compact dwarfs, and tidal dwarfs. While kinematic studies provide an effective diagnostic of the

e ——

ary diagnostic, we use pub) spectroscopic [Fe/H] measurements of 16 Milky
Way dwarfs and 24 globular clusters to uniformly calculate their [Fe/H] spreads and associated uncertainties. Our
principal results are (1) no known, old star cluster less luminous than My = —10 has a significant (0.1 dex) spread
in its iron abundance; (2) known ultra-faint dwarf galaxies can be unambiguously classified with a combination of
kinematic and [Fe/H] observations; (3) the observed [Fe/H] spreads in massive (=>10° M) globular clusters do
not necessarily imply that they are the stripped nuclei of dwarfs, nor a need for dark matter; and (4) if ultra-compact
dwarf galaxies reside in dark matter halos akin to those of ultra-faint dwarfs of the same half-light radii, then they
will show no clear dynamical signature of dark matter. We suggest several measurements that may assist the future
classification of massive globular clusters, ultra-compact dwarfs, and ultra-faint galaxies. Our galaxy definition is
designed to be independent of the details of current observations and models, while our proposed diagnostics can
be refined or replaced as our understanding of the universe evolves.

Key words: galaxies: dwarf — galaxies: kinematics and dynamics — galaxies: star clusters: general
Online-only material: color figure
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What is a galaxy”
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Dwart Characterisation



Dwart Follow-up

structural  M/L SFH [Fe/H]  o[Fe/H]

wide

. . required beneficial
imaging

required
deep hi-

res
Imaging

beneticial - required - -

low-res

- required beneficial required beneficial
spectra

hi-res
spectra

- - beneficial beneficial required



Mass determination

Walker et al 2009
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Mass modelling problems

* [ow number of stars with velocities measured
 Not enough stars in the centre and on the periphery
 Large and poorly determined velocity errors

» Contamination

e \elocity anisotropy is not known

DM halos are probably not spherical



Number of stars available

104 stars typically available tor
the spectroscopic follow-up in
a “Classical” dwart galaxy

<102 stars typically available for
the spectroscopic follow-up in a
“Ultra-Faint” dwarf galaxy

Stellar Luminosity Function

10005

100

10f

M9O2 globular cluster



Contamination
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Impact of interlopers

Segue 1: Bonnivard et al 2015
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Figure 6 (star at R = 5.5 pc and with P = 0.39).



Accurate kinematics
at faint magnitudes
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Figure 1. Accuracy of simulated velocity dispersion estimates as a function of
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circles and open squares represent cases in which the errors used in the
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overestimated (pessimistic) by a factor of 1.25 and 1.5, respectively.



Accurate kinematics
at faint magnitudes
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Ultra-Faint: Difficult
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Dwart counts.
Theory vs Observations






The dwart census

Cumulative luminosity function
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Spatial anisotropy?

Planes of satellites




Observational Evidence

M31, [bata et al 2013
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/ known dwarf galaxy stellar streams:
Sagittarius, Iri-And, Monoceros, Her-Aquila, Cetus,Virgo,
none aligned with the so-called VPOS!



Future Prospects



The not so distant future

* Proper motions of individual stars in some of the dwartfs with
Gaia and HST

 New closer and fainter dwarfs with Gaia (new detection window)
* The complete Galactic dwarf census with LSST

 The 100 Mpc census with LSST and Euclid

* Proper motions of dwarfs with Gaia+LSST

 En-masse spectroscopy with new multi-fiber instruments:
WEAVE, 4MOST, DESI, SuMIRe



Why not look Instead
directly at the DM halos”

e Forensics of stellar stream perturbations allows to
recover the complete set of properties for a DM
sub-halo, including its mass, size and orbit! See
Erkal & Belokurov 2015a,b

Stream on Sky Distance to Stream
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Why not look Instead
directly at the DM halos”

e Forensics of stellar stream perturbations allows to
recover the complete set of properties for a DM
sub-halo, including its mass, size and orbit! See
Erkal & Belokurov 2015a,b
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The End



Extra slides



Accretion of dwarfs
onto dwarfs
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Tidal dwarts
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