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INTROPDUCTION

Dark Matter
22%

Q WIMP FREEZE-OUT - <
dm SET WHEN Fann ~J H

Q SET BY CP-VIOLATING, BARYON NUMBER
B VIOLATING OUT OF ERQUILIBRIUM PROCESSES.

*  GIVEN THE PHYSICS GENERATING BACH RUANTITY, RATIO IS A SURPRISE

% |F NOT A COINCIPENCE - NEED TO EXPLAIN THE CLOSENESS

= SHARED DYNAMICS = § ASYMMETRIC DARK §

~ MaTTER ]
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APM BASICS

* RELATE THIS PM ASYMMETRY TO THE BARYON ASYMMETRY

» LEADING TO:

= Cngp

¢+ VALUE oF (U (S DETERMINED BY HOW THE ASYMMETRIES ARE SHARED
BETWEEN THE TWO SECTORS



APM BASICS

Qd Tldm T'dm
Codme (F Ndm ~ 1B

(p B MB

<+ THEN WE GET A PREDICTION FOR THE MASS OF THE DPARK MATTER

' ™Mdam ~~ 5m]3 ~ H GeV



APM BASICS

Qd Tldm T'dm
Codme (F Ndm ~ 1B

(p B MB

¢ THEN WE GET A PREDICTION FOR THE MASS OF THE PARK MATTER

' ™Mdm ~~ 5m]3 ~ 5 GeV

¢ THIS (S THE “NATURAL” DARK MATTER MASS FOR ADM MODELS.

¢ NOT THE ONLY POSSIBLE MASS, MORE SOPHISTICATED MODELS
CAN ALLOW FOR A LARGE RANGE OF ADM MASSES

_ DEPENDS ON THE WAY (N WHICH THE ASYMMETRY
IS SHARED (OR GENERATED)
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APM BASICS

(N MANY MODELS, SYMMETRIES ARE INTROPUCED THAT LINK THE

BARYON AND DARK MATTER SECTORS

IN THE DARK sEcTor: [J (1)} * INTHESMsector: [U(1)p_1,

GQENERICALLY RERUIRE OPERATORS THAT BREAK THESE TWO
SYMMETRIES DOWN TO

THESE OPERATORS PLAY A CRUCIAL ROLE IN TRANSMITTING THE
ASYMMETRY FROM ONE SECTOR TO ANOTHER

THEY CAN ALSO LEAD TO SIGNALS. B.G. AT THE LHC, SEE LATER...
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APM BASICS

<«  ACHIEVING: Ndm — Ng,;, X NB — Ny
* TWO TYPES OF MODELS TO PO THIS

SHARING A PRE-EXISTING ASYMMETRY

¥ ASSUME A PRE-EXISTING ASYMMETRY

*k HigH SCALE LEPTOGENESIS OR BARYOGENESIS

*k ASYMMETRY GENERATED VIA SOME DARK VERSION OF
BARYOGENESIS

¥ ASYMMETRY TRANSFERRED/SHARED BETWEEN SECTORS

CO-GENEBRATING BOTH ASYMMETRIES

® ASYMMETRIES IN DM AND BARYONS CREATED SIMULTANEOUSLY

® DM GENESIS AND BARYOGENESIS WRAPPED UP (N ONE MECHANISM

® POTENTIAL TO TEST BOTH PM GENESIS AND BARYOGENESIS



ELECTROWEAK ANOMALY

PLAYS A CRUCIAL ROLE IN MOST BARYOGENESIS/LEPTOGENESIS MODELS

TAKEN FROM BUCHMULLER,

B 4 LviotaTiNg PrOCESSES, S

SL
Sy,

coNsSeErRVES B — L

/o

OPERATES EFFICIENTLY FOR .

102 GeV > T 2 100 GeV

Sphaleron

\
\
\ /

\
!

€ BELOW - EXPONENTIALLY SUPPRESSED

CAN EFFECTIVELY BE THOUGHT OF AS MULTI-PARTICLE VERTEX
INVOLVING SU(Q)L STATES



ELECTROWEAK ANOMALY

PLAYS A CRUCIAL ROLE IN MOST BARYOGENESIS/LEPTOGENESIS MODELS

TAKEN FROM BUCHMULLER,

B 4 LviotaTiNg PrOCESSES, S
coNserves B — L

SL

\

OPERATES EFFICIENTLY FOR |

Sphaleron)

102 GeV > T 2 100 GeV

€ BELOW - EXPONENTIALLY SUPPRESSED

CAN EFFECTIVELY BE THOUGHT OF AS MULTI-PARTICLE VERTEX
INVOLVING SU(Q)L STATES

F B # 0aNp L # 0, Bur B — L = 0, B-WBAK ANOMALY WILL WASH
THE ASYMMETRIES OUT

F B=0®8uTL+#0,B —L # 0, E-wear ANOMALY WILL
REPROCESS THE |, ASYMMETRY INTO A B asymmerry
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SHARING

& ASSUME THE PRESENCE OF A NON-ZERO PRIMORDIAL ASYMMETRY IN BITHER PARK MATTER OR
BARYON OR LEPTON SECTOR

T

iINnTAL AsyMmeTRY IN X, B or L

10'? GeV| —

SOME OPERATOR RESPONSIBLE FOR
PROCESSES THAT VIOLATES A
comeIiNATION oF B, I AN X BUT

/ preserve B — L + X

1
—Ox0Op_1

102 GeV fp—— T T “—  crucat X ane B — L vioraring
PROCESSES ARE IN-ACTIVE BEFORE DM
BECOMES NON-RELATIVISTIC - FIXES THE
ASYMMETRY IN X

(IF WE WANT ~5 GEV STATES)

NEED SUFFICIENT ANNIHHLATION RATE TO :
REMOVE THE SYMMETRIC COMPONENT

LEADS TO CONSTRAINTS/POSSIBLE SIGNALS
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SHARING

% THERE ARE A THREE MAIN OPTIONS

B OR L VIOLATING |
| OPERATORS {

¢ [LET'S LOOK AT SOME EXAMPLES...



S H'AR( N 9 1 KAPLAN, LUTY, ZUREK (2009)

+ B OR L VIOLATING OPERATORS - EXAMPLE CASE
® GLOBAL SYMMETRY U(l)g_1_x/2
€ AT HIGH TEMPERATURES A B — L ASYMMETRY IS GENERATED

9 [INTRODUCE AN OPERATOR THAT PRESERVES B — [L — X /2, VIOLATING B — L
AND X (CONTEXT OF SUSY)

X HAS cHARGE X = 1




KAPLAN, LUTY, ZUREK (2009)

+ B OR L VIOLATING OPERATORS - EXAMPLE CASE
® GLOBAL SYMMETRY U(l)g_1_x/2
€ AT HIGH TEMPERATURES A B — L ASYMMETRY IS GENERATED

¥ (NTRODUCE AN OPERATOR THAT PRESERVES B — L, — X /2, VIOLATING B — L
AND X (CONTEXT OF SUSY)

X HAs cHArRGE X = 1

® WHEN N THERMAL EQUILIBRIUM, OPERATOR TRANSFERS ASYMMETRY
FROM [, To X NUMBER.

€ NEED TO ANALYSE CHEMICAL POTENTIALS TO WORK OUT THE RATIO OF
ASYMME| RIES (N X AND B SEE B.q. HARVEY, TURNER 90



KAPLAN, LUTY, ZUREK (2009)

¥ CALCULATION CRITICALLY PEPENDS ON WHAT PARTICLES AND WHAT
INTERACTIONS ARE IN THERMAL EQUILIBRIUM

9
@ ASSUME THAT THE TRANSFER OoPERATOR AW = MX LH, proPs out
OF THERMAL EQRUILIBRIUM ABOVE THE ELECTROWEAK PHASE
TRANSITION.
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S HAR‘ N Q 1 KAPLAN, LUTY, ZUREK (2009)

¥ CALCULATION CRITICALLY PEPENDS ON WHAT PARTICLES AND WHAT
INTERACTIONS ARE IN THERMAL EQUILIBRIUM

9

@ ASSUME THAT THE TRANSFER OoPERATOR AW = MX LH, proPs ouT
OF THERMAL EQRUILIBRIUM ABOVE THE ELECTROWEAK. PHASE
TRANSITION.

¥ AT THIS POINT, THE ASYMMETRIES IN X ANDP B — [ ARE FIXED AS Now [U(1)x
AND U(1)p_1, ARE RESTORED (FIXING ASYMMETRY IN X )

¥ SOLVING THE CHEMICAL POTENTIAL ERUATIONS WE ARRIVE AT

— __—_B-L) = B=031(B-L)




S HAR‘ N 9 2. BARR, CHIVUKULA, FAHRI, 90, BARR 91, KAPLAN ‘92, ALSO SEFE E.G.

FoAD|, FRANDSEN, SANNINO'09, KrRIBS, ROY, TERNING, ZUREK 09

* DARK MATER STATES ARE CHARGED UNDER SU (2) anp U(1)x

@ U(l)x SYMMETRY CONSTRUCTED TO HAVE A CHIRAL ANOMALY uNper SU(2);,
JusT ke B — L (N THE SM



BARR, CHIVUKULA, FAHRI, 90, BARR 91, KAPLAN ‘92, ALSO SEFE E.G.
FOADI, FRANDSEN, SANNINO'09, KriBS, ROY, TERNING, ZUREK ‘09

* DARK MATER STATES ARE CHARGED UNDER SU(2)1 AN U(1)x

@ U(l)x SYMMETRY CONSTRUCTED TO HAVE A CHIRAL ANOMALY uNper SU(2)p,
JusT ke B — L (N THE SM

THE COMBINATION IS VIOLATED, WHERE

N X IS THE NUMBER OF DPARK STATES CHARGED UNDER ST (2)

NG IS THE NUMBER OF GENERATIONS CARRYING B AND [,

Ng

THe comeiNaTiIoONs [V = B X No =B — L Arerreserver
X




BARR, CHIVUKULA, FAHRI, 90, BARR 91, KAPLAN ‘92, ALSO SEFE E.G.
FOADI, FRANDSEN, SANNINO'09, KrRiBS, ROY, TERNING, ZUREK 09

* DARK MATER STATES ARE CHARGED UNDER SU(2)1 AN U(1)x

@ U(l)x SYMMETRY CONSTRUCTED TO HAVE A CHIRAL ANOMALY uNper SU (2)p
Just ukre B — L IN THE SM

’

THE COMBINATION IS VIOLATED, WHERE

N X S THE NUMBER OF DARK STATES CHARGED UNDER S/ (2) I

NG IS THE NUMBER OF GENERATIONS CARRYING B AND [,

Ng

THe comBINATIONS [V 1 = B X N 2 = B — L Arerreserver
X

® [F A PRIMORDIAL ASYMMETRY EXISTS sucH THAT eitHer [V or [V ArRE NON-ZERO,
ASYMMETRY WILL BE SHARED BY THE ELECTROWEAK ANOMALY

® For A5 BV STATE CHARGED UNDER SU(Z)L, THIS IS HHGHLY CONSTRAINED BY
ELECTROWEAK PRECISION MEASUREMENTS - WE WILL COME BACK TO THIS...



SEE E.q. BUCKELY, RANDALL 11

< DARK VERSION OF ELECTROWEAK SPHALERONS

¥ [NTRODUCE A HIPDEN NON-ABELIAN GAUGE SYMMETRY, B.6. SU(2) R, AND A U(1)x
WHICH HAS A cHRAL SU (2) g ANOMALY.

9 STANDARD MODEL STATES ALSO CHARGED UNDER THESU (2)p  witht B or L
ALSO HAVING A cHIRAL SU (2) g ANOMALY

¥ AS WITH THE ELECTROWEAK ANOMALY, AN ASYMMETRY IN EITHER X ,B or L

WILL BE TRANSFERRED TO THE OTHERS



SEE E.q. BUCKELY, RANDALL 11

< DARK VERSION OF ELECTROWEAK SPHALERONS

¥ [NTRODUCE A HIPDEN NON-ABELIAN GAUGE SYMMETRY, B.6. SU(2) R, AND A U(1)x
WHICH HAS A cHRAL SU (2) g ANOMALY.

9 STANDARD MODEL STATES ALSO CHARGED UNDER THESU (2)p  witht B or L
ALSO HAVING A cHIRAL SU (2) g ANOMALY

¥ AS WITH THE ELECTROWEAK ANOMALY, AN ASYMMETRY IN EITHER X ,B or L

WILL BE TRANSFERRED TO THE OTHERS

® HARD TOJUSTIFY A S5 GEV DARK STATE AND AVOID LIMITS ON RIGHT HANDED
GAUGE BOSONS - COME BACK TO THIS ALSO...



HEAVY ADM R

*  CAN HAVE ADM WITH HEAVY MASSES

¢+ X NUMBER VIOLATING PROCESSES ONLY DECOUPLE AFTER PM HAS
BECOME NON-RELATIVISTIC



HEAVY ADM B

+  CAN HAVE APM WITH HEAVY MASSES

+ X NUMBER VIOLATING PROCESSES ONLY DECOUPLE AFTER PM HAS
BECOME NON-RELATIVISTIC

—> PARK MATTER ASYMMETRY GETS BOLTZMANN SUPPRESSED

T PECOUPLING TEMP OF X-NUMBER
VIOLATING INTERACTIONS

¢ ACTUAL SUPPRESSION IS MORE COMPLICATED - SEE BARR 91



HEAV ADM BUCKLEY, RANDALL; (2010)

¢ LARGE RANGE OF POSSIBLE MASSES

20
|
15 -
A
< T 1000 GeV -
210 -
. IDiZOOGeV .
| Tyy= 20 GeV Ty= 100 GeV
5_ -
- TD=10GBV
N S S T

Pom/PB



SEE .. BARR 91, BUCKELY, RANDPALL 11

+ TWO SHARING EXAMPLES CAN WORK IN THIS REGIME...

+ DARK MATER STATES ARE CHARGED UNDER SU (2);, AND U(1)x

¥ EASIER TO AVOID ELECTROWEAK PRECISION CONSTANTS WITH HEAVIER
PARK MATTER
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+ DARK MATER STATES ARE CHARGED UNDER SU(2);, AND U(1)x
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HEAV I AD M SEE B.G. BARR 91, BUCKELY, RANDALL ‘11

< TWO SHARING EXAMPLES CAN WORK IN THIS REGIME...

+ DARK MATER STATES ARE CHARGED UNDER SU(2);, AND U(1)x

¥ ECASIER TO AVOID ELECTROWEAK PRECISION CONSTANTS WITH HEAVIER
PARK MATTER

< DARK VERSION OF ELECTROWEAK SPHALERONS

¥ MASS SCALES OF PARK MATTER STATES CAN NOW BE LARGE AND

ARISE MORE NATURALLY (N A MOBEL WITH HEAVY SU (2) R cAUGE
BOSONS

¢ A LSO OPENS UP MORE POSSIBILITIES WITH TRANSFER

OPERAT_ORS e SEE B.G. KRIBS, ROY, TERNING, ZUREK '09; BUCKELY, RANDALL ‘11
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* DARK SECTOR GENERATES ASYMMETRY

DUTTA, KUMAR 10; SHELTON, ZUREK "10;
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GENERATING AN ASYMMETRY

+  HigH SCALE LEPTOGENESIS OR BARYOGENESIS - SM SECTOR

* DARK SECTOR GENERATES ASYMMETRY

DUTTA, KUMAR 10; SHELTON, ZUREK "10;

€ DPARK VERSION OF ELECTROWEAK BARYOGENESIS T AR TRODBENL VOUKAS 4o WALK R 15

¥ SPONTANEOUS PARK BARYOC,ENES(S COHEN, KAPLAN ‘8% '22; MARCH-RUSSELL, MCCULLOUGH

¢ (Co-geENEsSIsS

¥ GENERATE BOTH DARK MATTER AND BARYON ASYMMETRY AT THE SAME TIME
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CO-gENESIS

No INITaL AsyMMeETRY IN- X, B or L

N1/ 1
R —Ox0Op_1

d;, ———iSphaleron}——— b,
\ /
N 4
L vr

AGAIN coMBINATION oF B, L
AND X NUMBER VIOLATED AND
B — [, + X PRESERVED.

BUT NOW, THESE INTERACTIONS
ARE RESPONSIBLE FOR
GENERATING THE ASYMMETRY.
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CO-gENESIS

No INITaL AsyMMeETRY IN- X, B or L

10" GeV] —

AND X NUMBER VIOLATED AND

1 / B — L + X PRESERVED.
—Ox0Op_1

T AGAIN coMBINATION oF B, L

BUT NOW, THESE INTERACTIONS
ARE RESPONSIBLE FOR
GENERATING THE ASYMMETRY.

AGAIN NEED SUFFICIENT ANNIHILATION RATE
TO REMOVE THE SYMMETRIC COMPONENT

* SOME INTERESTING EXAMPLES ON THE MARKET



* DECAYING STATES

EXTEND LEPTOGENESIS:

CO-gENESIS

SEE B.q. FALKOWSKI, RUPERMAN, VOLANSKY 11

N;

AilN; y YM LH

SIMULTANEOUSLY
GENERATES ASYMMETRY
IN DM AND LEPTONS

DEPENDS ON COUPLINGS
AND PHASES IN EACH
SECTOR



CO-gENESIS

- DECAY' Nq STAT'ES SEFE B.G. FALKOWSKI, RUDPERMAN, VOLANSKY ‘41
EXTEND LEPTOGENESIS: N;
AiN; x ¢ yilN; LH SIMULTANEBOUSLY
GENERATES ASYMMETRY

IN DM AND LEPTONS

DEPENDS ON COUPLINGS
AND PHASES IN EACH
SECTOR

K AFFLECK—D[ NE AFFLECK, DINE '25; DINE, KUSENKO '04; CHEUNG, ZUREK ‘12

EXTEND AFFLECK-DINE MECHANISM - FLAT DIRECTIONS USED CARRY BOTH B — L AND X
NUMBER



CO-gENESIS

- DECAY' Nq ST'A"—ES SEFE B.G. FALKOWSKI, RUDPERMAN, VOLANSKY a1
EXTEND LEPTOGENESIS: N;
AiN; x ¢ yilN; LH SIMULTANEBOUSLY
GENERATES ASYMMETRY

IN DM AND LEPTONS

DEPENDS ON COUPLINGS
AND PHASES IN EACH
SECTOR

K AFFLECK—D' NE AFFLECK, DINE '25; DINE, KUSENKO '04; CHEUNG, ZUREK ‘12

EXTEND AFFLECK-DINE MECHANISM - FLAT DIRECTIONS USED CARRY BOTH B — L AND X
NUMBER

%« FElLECTROWEAK CO-gENESIS CHEUNG, ZHANG 13

EXTENSION OF ELECTROWEAK BARYOGENESIS, 2 HIGGS POUBLETS AND 2 PARK SCALAR
CARRYING U(1)x CHARGES ARE REQUIRED.

UTILISES 1ST ORDPER EW PHASE TRANSITION.
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CONSTRAINTS AND SIGNALS

LHC LIMITS - MONO)ETS, MONOPHOTONS

} REMOVING SYMMETRIC §
! DM COMPONENT

PIRECT PM BPETECTION
HEAVY QUARKONIUM DECAY'S
BBN, CMB PERTURBATIONS

} PROBING ASYMMETRY |
I SHARING OPERATORS

LHC LIMITS - LONG LIVED STATES



! SHARI

} REMOVING SYMMETRIC §
! DM COMPONENT

l PROBING ASYMMETRY |}

CONSTRAINTS AND SIGNALS

) ) LHC LIMITS - MONOJETS, MONOPHOTONS
DIRECT DM DETECTION
HEAVY RUARKONIUM DECAYS

BBN, CMB PERTURBATIONS

I LHC LIMITS - LONG LIVED STATES
NG OPERATORS .

DM-ANTI DM OSCILLATIONS
ADM COULD DECAY VIA SHARING OPERATORS
ADM CAN COLLECT IN STARS

COULD FORM DARK NULCLEL -
SEE LATER IF TIME

IMPORTANT: CAN HAVE DIRECT PETECTION



REMOVING SYMMETRIC CPT

BUCKLEY; MARCH-RUSSELL, UNWIN, SMW

THIS IS TRUE ONLY IF THE X DENSITY IS
DETERMINED BY THE ASYMMETRY

lam Ndm + Ngm Mdm  Loose RELATIONSHP
Op nQ mp ~ BETWEBN ABUNDANCES

NEED: Ndm T N3y ~ Ndm — Mg,



REMOVING SYMMETRIC CPT

BUCKLEY; MARCH-RUSSELL, UNWIN, SMW

THIS IS TRUE ONLY IF THE X DENSITY IS
DETERMINED BY THE ASYMMETRY

() Ndm + N5—m
T HER WIS E: dm  7°dm dm ''*dm  LoosereLATIONSHP
Op nQ mp ~ BETWEBN ABUNDANCES
NEER: Ndm T N3y ~ Ndm — Mg,

*  NEEP TO ANNIHILATE AWAY THE SYMMETRIC COMPONENT
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X SM
1) ANNIHILATE DIRECTLY TO SM STATES \'/
SEVERE LIMITS FOR HEAVY MEDIATORS / \

X SM
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REMOVING SYMMETRIC CPT

"1) ANNIHILATE DIRECTLY TO SM STATES

SEVERE LIMITS FOR HEAVY MEDIATORS

>

2) ANNIHILATE DIRECTLY TO LIGHT HIDDEN
SECTOR STATES

POSSIBLE CONTRIBUTION TO PARK
RADIATION

>
h<

3) ANNIHILATE TO VERY LIGHT HIDDEN %
SECTOR STATES THAT LATER DECAY TO SM

LATE TIME ENERGY INJECTION IN BARLY X Y SM
UNIVERSE



A (GeV)

1000

100 :

10 |

REMOVING SYMMETRIC CPT

MARCH-RUSSELL, UNWIN, SMW ‘12

REMOVAL OF SYMMETRIC CPT

- DIRECT PETECTION LIMITS

CMS MONOJETS 4.67fb "
" ATLAS MONOJETS Tifh 1




REMOVING SYMMETRIC CPT

MARCH-RUSSELL, UNWIN, SMW ‘12

REMOVAL OF SYMMETRIC CPT

1000 - DIRECT DETECTION LIMITS

A (GeV)

100 :

N CMS MONOJETS 4.6Tfb!

1o " ATLAS MONOJETS Tifh 1

% NEED TO CONSIPER LIGHT MEDIATORS...LOTS OF PHYSICS



NUCLEAR PARK MATTER

¢ INTERESTING POSSIBILITY THAT ADM COULD BIND TOGETHER TO FORM LARGE
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+ CAN WE HAVE THE ANALOGY TO THE SM IN TERMS OF BUILDING UP LARGE
COMPOSITE STATES OF PM - BUT LARGE DARK NUCLE! FORM IN DARK VERSION

OF BIG BANG NUCLEOSYNTHESIS
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COMPOSITE STATES

+ CAN WE HAVE THE ANALOGY TO THE SM IN TERMS OF BUILDING UP LARGE
COMPOSITE STATES OF PM - BUT LARGE DARK NUCLE! FORM IN DARK VERSION
OF BIG BANG NUCLEOSYNTHESIS

¢ OLD EXAMPLES OF BOUND STATES OF PARK MATTER ARE:

* WIMPONIUM (BOUND STATE OF TWO PM PARTICLES)

M. POSPELOV AND A. RITZ'08; MARCH-RUSSELL, SW '08;
SHEPHERDPA, TAIT, ZAHARYASE '09; PANOTOPOULOS 10,
LAHA 13 '15; VON HARLING, PETRAKI! 14, PETRAKI,
PosTMA, WIECHERS 15

¢ ATOMIC DPARK MATTER KAPLAN, KRNJAIC, REHERMANN, WELLS 09, 11

+ CAN WE GO BIGGER?



NUCLEAR PARK MATTER
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NUCLEAR PARK MATTER

G. KRNJAIC AND K. SIGURDSON "14; HARDY, LASENRY,
MARCH-RUSSELL, SW 14, 15

PROPOSE DM HAS SHORT-RANGED STRONG “NUCLEAR” BINDING FORCE WITH
HARD CORE REPULSION - ANALOGQY WITH THE SM

DM OR “PARK NUCLEONS” POSSES APPROXIMATELY CONSERVED
RUANTUM NUMBER, PARK NUCLEON NUMBER (BDNN) - ANALOGOUS TO
BARYON NUMBER

ASSUME DARK NUCLEONS PRESENT ONLY - ASYMMETRIC

FOR MINIMALITY, ONLY ONE TYPE OF DARK NUCLEON PRESENT AND NO
DARK VERSION OF THE COULOMEB FORCE

NO COULOMB FORCE - BINDING ENERGY PER NUCLEON DOES NOT TURN
OVER AT LARGE DNN

DARK NUCLE! EXIST WITH A RANGE OF DNNS, FORMING POST FREEZ E-OUT VIA
DARK NUCLEOSYNTHESIS
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%k XRCDP-LIKE MODEL - NUCLEI WITH SMALL NUMBERS OF PARK

cLe :
NU ONS PeTMOLD, McCuLLougH, POCHINSKY 14
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TO PARK NUCLEI (OR NUGGETS) WITH LARGE NUMBER
NUCLEONS. NO HARD CORE REPULSION LEADING TO
INTERESTING RADIUS VS PNN BEHAVIOUR

WISE AND ZHANG 14



NUCLEAR PARK MATTER

+ RELATED WORKS

%k XRCDP-LIKE MODEL - NUCLEI WITH SMALL NUMBERS OF PARK

C :
NUCLEONS DETMOLD, McCuLLougH, POCHINSKY 14

* YUKAWA INTERACTIONS BETWEEN DPARK NUCLEONS LEADING
TO PARK NUCLEI (OR NUGGETS) WITH LARGE NUMBER
NUCLEONS. NO HARD CORE REPULSION LEADING TO
INTERESTING RADIUS VS PNN BEHAVIOUR

WISE AND ZHANG 14

* BARLY EXAMPLES (N TERMS OF & BALLS

FRIEMAN, GELMINI, GLEISER, KOL®B '88; FRIEMAN,
OULINTO, GLEISER, AND C. ALCOCK ‘9 KUSENKO,
SHAPOSHNIKOV '97F;
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NUCLEAR PARK MATTER

+« [INTERESTING POSSIBILITIES:

€ THERMALLY PRODUCED PARK MATTER WITH MASSES IN
EXCESS OF THE USUAL UNITARITY BOUND GRIEST, KAMIONKOWSKL ‘90

¥ DIRECT DETECTION RATES COHERENTLY ENHANCED BY PNN

¥ POTENTIAL FOR INELASTIC INTERACTIONS IN BOTH DIRECT
DETECTION ANDP IN ASTROPHYSICAL ENVIRONMENTS

¥ POTENTIALLY PRODUCE STATES WITH VERY LARGE SPIN



NUCLEAR DARK MATTER IN DIRECT DETECTION

+ SEVERAL INTERESTING POINTS

Y MOMENTUM DEPENDENT SCATTERING DPUE TO PARK NUCLEI
FORM FACTOR

¥ FOR A LARGE RANGE OF THE MOMENTUM TRANSFER , ELASTIC
SCATTERING (AND POSSIBLY INELASTIC) WILL BE COHERENTLY
2
ENHANCE BY k

* HOWEVER, OVERALL RATE WILL INCREASE AS K
pDUETO 1/k DECREASE IN NUMBER DENSITY

9 DUE TO COHERENCE EFFECTS, UNDERLYING SIZE OF INDIVIDUAL
DPARK NUCLEON-RUARK INTERACTION REDUCED - -
CONSERUENCE FOR SEARCHES AT COLLIDERS



SUMMARY

&+ FREEZE-OUT IS BY NO MEANS THE ONLY WAY TO GENERATE DM IN THE
EARLY UNIVERSE

* APM IS AWELL MOTIVATEP AND RICH WAY TO EXPLAIN

APM UTILISES A SHAREP SYMMETRY BETWEEN THE PARK AND STANDARD
MODEL STATES

PRIMORDPIAL ASYMMETRIES CAN BE TRANSFERREDP FROM ONE SECTOR TO
THE OTHER OR BOTH ASYMMETRIES CAN BE CO-GENERATED,

NUCLEAR PM POSSIBILITY EXTENDS THE APM SET-UP. MANY EXCITING
CONSERUENCES FOR A WIDE RANGE OF EXPERIMENTS

LOTS OF POSSIBILITIES TO INVESTIGATE!



NUCLEAR PARK MATTER

HARDY, LASENBY, MARCH-RUSSELL, SW 14, 15

+ AGGREGATION PROCESS - NEGLECTING DISSOCIATIONS

dnk t - L
dt( ) - 3H (t (ov)jem(t)ng(t) + 9 Z (ov)i,5mi(t)n;(t)

j=1 i+ji=k

é\@ O>E




« REWRITING YL — Yk/YO AND <O'”U>7;’j — 0'1”01K7;7j WHERE

YO (S TOTAL YIELP OF PARK NUCLEONS

K - PARAMETERISES RELATIVE RATES OF DIFFERENT
L) FUSION PROCESSES

0'1 GEOMETRICAL CROSS SECTION OF INDIVIDUAL DARK
NUCLEON

U1 VELOCITY OF SINGLE NUCLEON

dyk 1
= P — Yk ZKj,kyj T+ 5 Z K 5YiY;
j i+j=k

dw

WHERE WE CAN DEFINE A — = YOO'1U1 (t)S(t)
DIMENSIONLESS TIME VARIABLE d



+ APPROXIMATING

1 1
K~ (%3 +723) [ =5 + -
\J T /2 j1/2 N
RELATED TO
RELATIVE VELOCITY

v ~ T/m

RELATED TO
GEOMETRICAL SIZE



+ APPROXIMATING

1|1
'j1/2\

RELATED TO
RELATIVE VELOCITY

v ~ T/m

Ki,' ~ (i2/3 f‘]Q/S) Z-l/g

RELATED TO
GEOMETRICAL SIZE

¢ FOR THIS CASE THERE IS AN ATTRACTOR SCALING
SOLUTION FOR LARGE DNN (VALID FOR ALL INITIAL
SEE BE.q. KRAPIVSKY, REPNER, BEN-NAIM, A
CONDITIONS WE CONSIDER)

KINETIC VIEW OF STATISTICAL PHYSICS,
cup, 10

0.01

0.01;

1 5 10 50 100 500 1000 I s 10 50100 5001000
0) — - k/30 INITIAL CONDITIONS: MOSTLY
Yk — € IN SINGLE NUCLEONS, BUT

WITH A SUB-POMINANT TAIL



NUCLEAR DARK MATTER IN DIRECT DETECTION

+ SEVERAL INTERESTING POINTS

VY MOMENTUM DPEPENDENT SCATTERING PUE TO PARK NUCLEL
FORM FACTOR



