

The EDELWEISS-III Search for Low Mass WIMPs

HAP Dark Matter 2015 21-23 September 2015, Karlsruhe

Lukas Hehn, Institut für Kernphysik (IKP)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Direct Dark Matter detection with EDELWEISS

Ge monocrystal bolometer

background discrimination:

- 2 *NTD* phonon sensors:
 - \rightarrow calorimetric measurement of total energy
 - @ T=18mK → Δ T≈0.1 µK/keV
- 4 groups of *interleaved* AI ring electrodes:
 - → ionization measurement

Location of the EDELWEISS experiment

HAP Dark Matter 2015

The EDELWEISS collaboration

LSM @ Fréjus tunnel

The EDELWEISS Shielding Concept

open shielding with cryostat & 300K electronics

FID800 detector in copper casing

Nuclear recoil discrimination

Surface event rejection with the *full interdigitized* (FID) electrode readout design

Surface event rejection with the *full interdigitized* (FID) electrode readout design

Data for WIMP search

8 months of physics data 2014/2015 with 24 x FID800 detectors

I ow mass WIMP search.

- blinded ROI
- 8 detectors with good baselines and low trigger thresholds
- homogeneous data set
- analysis threshold in heat: 4x FID800 @ 1.0 keVee 4x FID800 @ 1.5 keVee*

*1 keVee \approx 2.4 keVnr

582 kg.days (fiducial) (EDELWEISS-II: 113 kg.days) sensitivity for WIMPs in [4, 30] GeV

EDELWEISS Run308 - Exposure before dead-time correction

Karlsruhe Institute of Technology

Data for WIMP search

8 months of physics data 2014/2015 with 24 x FID800 detectors

Low mass WIMP search:

- blinded ROI
- 8 detectors with good baselines and low trigger thresholds
- homogeneous data set
- analysis threshold in heat:
 4x FID800 @ 1.0 keVee
 4x FID800 @ 1.5 keVee*

*1 keVee ≈ 2.4 keVnr

582 kg.days (fiducial) (EDELWEISS-II: 113 kg.days) sensitivity for WIMPs in [4, 30] GeV

All data - backgrounds

All data - backgrounds

Description of detector backgrounds from WIMP search data:

- energy spectra and quenching modelled from regions without signal (sidebands)
- calibration data is used for cross checks

All data - before BDT analysis

Boosted Decision Tree (BDT):

- sig/bkg discrimination with 6 variables:
 4 ionization + 1 (combined) heat + 1 heat-only rate
- individual detector effects: DAQ trigger, noise
- BDT training with high statistics

Heat-only events

Bulk gammas

Surface event populations

individual models for detector sides top and bottom

use clear surface events with **Signal**_{veto} > $5\sigma_{\text{baseline}}$

Gammas:

fit of flat compton & cosmogenic lines in [3,15] keVee line intensity fixed from fiducial gammas and mass fraction

Betas:

fit of spline function in [4,25] keVee extrapolation down to 0 keVee

Lead:

fit of Gaussian peak & flat component in [10,35*] keVee extrapolation down to 0 keVee

*206Pb recoil of 103 keV ≈ 33 keVee

BDT analysis and output

For each detector:

- one BDT distribution for each WIMP mass [4, 5, 6, 7, 10, 15, 20, 30] GeV
- backgrounds normalized to expected # of evts
- BDT cut optimized before unblinding

BDT analysis and output

For each detector:

- one BDT distribution for each WIMP mass [4, 5, 6, 7, 10, 15, 20, 30] GeV
- backgrounds normalized to expected # of evts
- BDT cut optimized before unblinding

For all 8 detectors in BDT selected cut window:

mχ	N_bkgd expected	N_bkgd observed	p-value (stat only)
5 GeV	6.14	9	0.17
20 GeV	1.35	4	0.10

Dominant backgrounds:

- low WIMP mass: heat-only events & (cosmogenic) gammas
- high WIMP mass:
 radiogenic neutrons
 (preliminary systematic ~45%)

Observed candidate events after BDT cut

mχ	N_bkgd expected	N_bkgd observed	p-value (stat only)
5 GeV	6.14	9	0.17
20 GeV	1.35	4	0.10

5 GeV: only 4 detectors @ 1 keVee threshold

Low mass WIMP limits and outlook

- Poisson limits w/o background subtraction
- preliminary 90% C.L. exclusion
 limit for spin-independent
 WIMP-nucleon scattering:
 4.6 x 10⁻⁴⁰ cm² @ 5 GeV
 6.2 x 10⁻⁴⁴ cm² @ 30 GeV
 - → factor 40 improvement @ 7 GeV
 & new data down to 4 GeV
- cross checks with 2d profile likelihood analysis ongoing and in good agreement
- post-unblinding checks ongoing
- "high energy analysis" coming soon

Current run:

- DAQ resumed in June 2015
- 23 FID800 installed (12 new)
- 1 FID200 for "High-Voltage" R&D (Neganov-Luke amplification)

Low mass WIMP limits and outlook

- Poisson limits w/o background subtraction
- preliminary 90% C.L. exclusion
 limit for spin-independent
 WIMP-nucleon scattering:
 4.6 x 10⁻⁴⁰ cm² @ 5 GeV
 6.2 x 10⁻⁴⁴ cm² @ 30 GeV
 - → factor 40 improvement @ 7 GeV & new data down to 4 GeV
- cross checks with 2d profile likelihood analysis ongoing and in good agreement
- post-unblinding checks ongoing
- "high energy analysis" coming soon

Current run:

- DAQ resumed in June 2015
- 23 FID800 installed (12 new)
- 1 FID200 for "High-Voltage" R&D (Neganov-Luke amplification)

R&D on HEMT

to lower ionization threshold down to $\sigma_{ion} = 100 \text{ eV}$ R&D on heat sensors and HV (Luke-Neganov) goal $\sigma_{heat} = 100 \text{ eV}$ and reduce recoil threshold

R&D to reduce heat-only events

backup slides

BDT output comparison (2)

AmBe Neutron calibration and BDT output

Low WIMP mass: neutrons are a negligible background. Events passing the BDT cut are below 2keVee heat energy and we would expect radiogenic neutrons at higher energy

High WIMP mass: BDT cut at ~7, dark red events are passing the cut.

Neutrons

- During the WIMP search, we see 9 multiple nuclear recoil events (excluded from the search data set) after muon cut, in 17 detectors in 1300 kg.days
- This has been used as normalization factor in simulation, BDT training and BDT cut optimization along with the single-to-multiple ratio
- Single-to-multiple ratio from radiogenic neutron simulations varies between FIDs.
 An average has been considered
- Systematics : sqrt(9) + large variation is single-to-multiple ratio

Heat-only time dependance

Beta and Lead models

Neutron and γ calibration of FID800 detectors

