TAIGA: status, results and perspectives

L.Kuzmichev (SINP MSU) On behalf of TAIGA Collaboration

IV International Workshop "Data life cycle in physics", DLC-2020 09/06 2020

Content of report

- 1. Introduction: Astrophysical complex in Tunka Valley
- 2. High energy gamma-ray astronomy and TAIGA project
- 3. TAIGA current status
- 4. First results
- 5. The experiment in future

TAIGA - collaboration

Germany

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich)

Italy

Torino University (Torino) **Romania** ISS (Bucharest)

Russia

MSU (SINP) (Moscow) ISU (API) (Irkutsk) INR RAS (Moscow) JINR (Dubna) MEPhI (Moscow) IZMIRAN (Moscow) BINR SB RAS (Novosibirsk) NSU (Novosibirsk) ASU (Barnaul)

1. Astrophysical complex in Tunka Valley

Tunka Valley, Republic Buryatia- 50 km to westfrom Lake Baikal.

-High energy cosmic rays and gammaastronomy arrays

- Optical telescope MASTER

All installations in Tunka Valley

The main aim of TAIGA project:

Study of very high energy (>30 TeV) gamma rays from Galactic accelerators with large area array (~10 km²)

Tunka-133 -175 optical detectors on the area of 3 km²

Cosmic rays and gamma ray withenergy> 10¹⁵ eV

Tunka- Grande – 380 scintillation counter for detection of EAS charged particles

CR energy spectrum: HiSCORE +Tunka-133 – from 10¹⁴ – 10¹⁸ eV

2.High-energy gamma-astronomy and the TAIGA project

The Sources of Gamma-rays

More 200 sources with gamma-ray > 1 TeV

- 1. SNR
- 2. PWN
- 3. Pulsars (Crab)
- 4. Binaries systems
- 5. Galactic center
- 6. Blasars
- 7 radiogalaxies
- 8. GRB (GRB190114C)

Gamma-ray generation

Leptonic

Hadronic

SN 1006 : what is the mechanism of gamma-ray generation?

How to understand the gamma-quantum generation mechanism

The contribution of gamma rays generated by electrons during IC scattering should be suppressed at high energies due to a decrease in the scattering cross section (Klein-Nishima effect)

Imaging Atmospheric Cherenkov Arrays (2-5 IACT)

Whipple HEGRA H.E.S.S. MAGIC VERITAS S ~ 0.1 km²

The basis of the gamma-ray selection - method is the detection of one EAS with two and a large number of telescopes - stereoscopic method

To study the of gamma-ray with ultra high energies, we need installations with area of $\sim 10 \text{ km}^2$

CTA project : 100 IACT on the area 10 km²

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

Medium energies

100 GeV – 10 TeV 9.7 to 12 m diameter 25 telescopes (MST's/SCTs)

High energies

Up to > 300 TeV 10 km² eff. area @ 10 TeV 4m diameter 70 telescopes

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

The main idea: A cost effective approach for construction of large area installation is a joint operation of wide-field-of-view timing Cherenkov detectors (the non-imaging technique) with a few small-size imaging Air Cherenkov Telescopes.

Scientific Program

Search for the acceleration limit of particle in known supernova remnants and PWN: Crab Nebulae и Boomerang (PWN), Tycho и Cas A (SNR), Dragonfly Nebula (2HWC J2019+367) ARGO J2031+4157 (Cygnus Cocoon)

Long-term monitoring and study of the edge of the energy spectrum bright blazars as a method for searching for distribution anomalies gamma rays in the universe and the search for axion-like particles. (1ES 0229+200, 1ES 1959+650, Mrk501, Mrk421, Arp 220, M82)

Search for excess diffuse gamma – rays with energies above 100 TeV Gamma-ray in accompany with neutrino (10⁻⁴ from CR) if part of IceCube neutrino from Galactic source

Study of CR mass composition in energy range 100-3000 TeV by hybrid approach

Wide angle station

TAIGA-IACT

560pixels(pmt XP1911)

PSF ~0.1°

CCD for checking telescope pointing direction.

Four approaches to detecting gamma rays in the TAIGA experiment

- 1. Autonomous work of one telescope E < 10-15 TeV
- 2 Stereoscopic approach for large distances between telescopes $E \ge 10 \text{ TeV}$
- 3. Hybrid approach joint operaton HiSCORE and IACTs E ≥ 40 TeV
- 4. HiSCORE μ muon detectors E ≥ 300-500 TeV

3. TAIGA current status

TAIGA - march 2020 : 86 stations и 2 telescopes

The 3 telescope will start operation only at the end of this year

2.5 month delay due to covid-19

Installing the camera on a second telescope (January 20, 2020)

The second IACT in Tunka(c 20.01 2020)

The second IACT

one of the first evnts

Two telescopes 320 m distance

4.The First results

Season 2019-2020 :

4 sources from October to May

Boomerang

Crab - 6 sigma

Mkr421 – 5 sigma

Mrk501

Hillas parameters

Proton shower (wide, points anywhere)

Size total number of P.E in image

Alfa distribution for Crab

Integral SIZE spectrum

EAS detection by two telescopes at a distance of 300 m stereoscopic approach for high energies

5. The future of experiment

The TAIGA-Muon scintillation array

Counter dimension 1x1 m^{2.}

Wavelength shifting bars are used for collection of the scintillation light.

Mean amplitude from cosmic muon is 23.1 p,e, with ±15% variation.

)

Wide-angle telescope on SiPMs

FoV of TAIGA-HiSCORE detectors is 60° but TAIGA-IACT – 10° as a result we have only 4% of joint events.

To study the gamma-ray with energy above 30 TeV we started off a development of a Small Image Telescopes (SIT) with a SiPM-based camera with a FoV up to 60° and an effective recording area of $1m^2$. We intend to test 3 variants of the SIT optical system: spherical mirror, a system of Fresnel lenses, combination of the two mentioned technologies

Shmidt camera,

- 1. Spherical Mirror
- 2. Corrected lens
- 3. Focal surface

FOV $\sim 15^{\circ}$

 $S \sim 1 m^2$

Number of pixels ~ 1000-1200 FOV for one pixel ~ 0.4 $^{\circ}$

Energy threshold ~ 10 TeV

A compact-size wide Field of View IACT with a SiPM-based camera for energies above 10 TeV.

Prototype SIT (FOV ~ 20° , S ~ 0.1 m^2 , 49 SIPM SensL MicroFC-60035-SMT, 6 × 6 mm²) was installed in the Tunka Valley for operation together with the TAIGA-HiSCORE array in September 2019.

Haw to decrease HiSCORE energy threshold ?

M.Shayduk et al (2015)

 $\Delta\Omega \sim 0.6 \text{ sr} >> 0.03 \text{ (for EAS)}$

100 channel May be another optical system

Background per channel in 100 smaller then Energy threshold in 10 times smaller (5 times for HiSCORE station with 4 PMT)

A future 10 square kilometer scale hybrid array for astroparticle physics, gamma-astronomy and cosmic ray physics

TAIGA-HiSCORE - array.

A net of 1000 non imaging wide-angle detectors distributed on area 10 km² with spacing 100 m about An EAS core position,

direction and energy

reconstruction.

TAIGA-IACT - array of 12 - 16 IACT with mirrors – 4.3 m diameter. Charged particles rejection using imaging technique.

A site requirement:

- altitude 2000 m about,
- no artificial light background,
- good astroclimate,
- enough vacant rather flat space,
- acceptable logistic condition,

TAIGA-Muon array of scintillation detectors, including underground muon detectors with area -2000 – 3000 m² Charged particles rejection

Conclusion

- 1 TAIGA 10 km² hybrid array 1000 wide-angle stations and 15-20 IACTs). The sensitivity for local sources in the energy range 30 -200 TeV is expected be – 10⁻¹³ TeV cm⁻² sec⁻¹ (for 500 h observation)
- 2. Deployment of the full scale TAIGA prototype -120 wide-angle stations and three IACTs will finished at the end of 2020.
 - The expected sensitivity for 300 hours source observation with this array in the range 30 200 TeV is about 2.5 10⁻¹³ TeV/(cm² sec), extending the energy range of existing and planned experiments to the ultra-high energy range.
- 3. The first commission seasons were successful:
 - CR energy spectrum below the knee
 - Detection of gamma-rays from Crab and Mrk-421
 - First results from joint operation of HiSCORE and IACT
- 4. Work has begun on the creation of a new cameras based on SiPM

Thank you for the attention

