Reconstruction radio signals from air-showers with autoencoder

P. Bezyazeekov for the Tunka-Rex collaboration

API ISU, Russia

9 June 2020

Deep learning: motivation

Average of 400 events, expected noise reduction with factor $\sqrt{400} = 20$

- \Rightarrow Noise is not white/contain features
- \Rightarrow Train autoencoder to learn these features

P. Bezyazeekov (Tunka-Rex Collab.)

Chosen architecture (autoencoder)

- Unsupervised neural network with compressed representation
- Use Keras and Tensorflow with GPU support
- Based of 1D convolution layers
- ReLu (max(0, x)) activation function
- Max pooling (and upsampling) after convolutional layers
- Binary crossentopy loss function and RMSprop optimizer
- Train networks via uDocker on SCC ForHLR II cluster

Learning strategy and training pipeline

Datasets:

• 25k upsampled (×16) traces with real background + low-amplitude simulations (< $100 \,\mu$ V/m) with randomly located pulse

Training and evaluation:

- Depth (D) and number of filters per layer as free parameters
- Primary evaluate by loss metrics
- Blind test with full-pipeline Offline reconstruction

i-th encoding layer is described by the following (i = 1, ..., D):

$$S_i = S_{\min} \times 2^{D-i}, \ n_i = 2^{i+N-1},$$
 (1)

where S_i is a size of the *i*-th filter, n_i is a number of filters per layer D and N are free parameters; $S_{\min} = 16$ is minimal size of layer Size of input/output array: 4096 (1280 ns) – 25% of original trace

(日) (周) (日) (日) (日)

Threshold and metrics

- Threshold amplitude \Leftrightarrow 5% tolerance to false positives
- Efficiency: $N_{\rm rec.}/N_{\rm tot.}$, fraction of events passed the threshold
- Purity: $N_{\rm hit}/N_{\rm rec.}$, fraction of events with reconstructed position of the peak: $|t_{\rm rec.} t_{\rm true}| < 5$ ns

Example: correct identification

True signal and noise are identified correctly, noise is removed

Example: no identification

True signal is heavily distorted by noise, and removed as background

Image: A math a math

Example: double identification

Signal-like RFI is identified as signal

Full-pipeline reconstruction with autoencoder

Autoencoder is binded with Tunka-Rex fork of Auger Offline Reconstruction of CoREAS simulations (reproduction of 2012-2014 events)

Preliminary conclusion

- Monte-Carlo tests show performance comparable to standard method and matched filtering
- "Stack more layers" works, but requires larger training sets
- Amplitude reconstruction degenerates when SNR < 1 trace is normalized to $[0;1] \Rightarrow$ peak is hidden in noise

How to convince ourselves that the reconstruction is valid when the signal is not visible?

Data-driven benchmark

- Tunka-133/Tunka-Rex events with $E \in [10^{16} 10^{17}] \text{ eV}$
- Almost zero events in this energy band by standard method
- Decreasing autoencoder threshold $0.395/0.500 \rightarrow 0.200/0.500$
- Cross-check cuts: direction reconstruction $\Delta \Omega < 5^{\circ}$, clustering events

Example reconstruction

9 June 2020 12 / 14

Energy reconstruction (after cuts)

Reconstruction based on single antenna method, $E = \kappa A_d e^{-\eta(d-d_0)}$ Normalization factor from standard reconstruction; $\mu = 0\%$, $\sigma = 26\%$

Conclusion

- The performance of Tunka-Rex autoencoder has been tested on real data
- Numbers of both true and false positives are increased when loosing cuts
- We can reconstruct arrival direction but struggling with energy reconstruction

- Radio autoencoder can be used as self-trigger technique
- Need more sophisticated cuts to lower the threshold
- Need better training