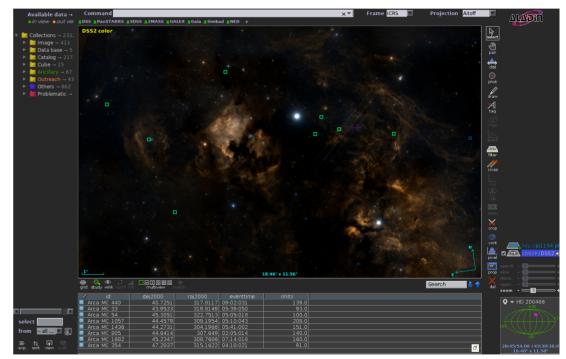

Publishing multi-purpose data sets from KM3NeT

IV International Workshop Data lifecycle in Physics 2020 8th – 10th June 2020 Jutta Schnabel for the KM3NeT collaboration

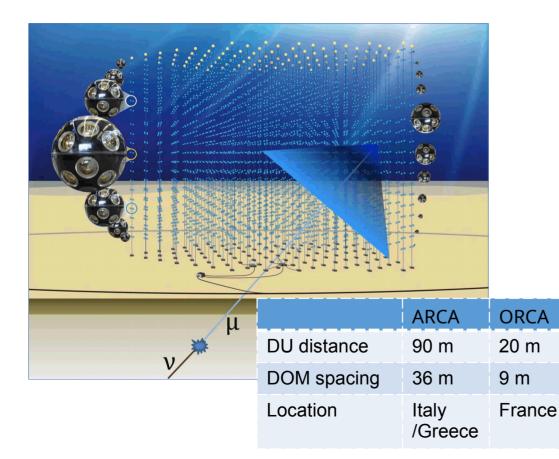
Overview



Moving towards Open Science

- KM3NeT Science between astrophysics and particle physics
- Data taking and processing rooted in particle physics, requiring high performance grid computing

Data publication needs


- Interfaces to various community standards
- Services for statistical interpretation of data sets

Neutrino events in the Virtual Observatory

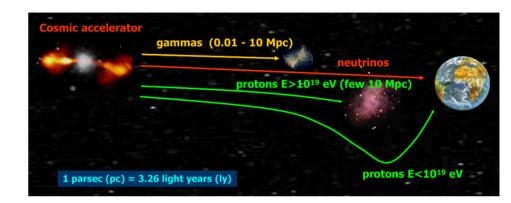
Detection principle and instruments

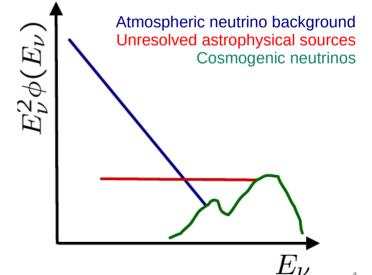
Water Cherenkov detector

- Multi-PMT modules
- (31 3"-PMTs in one sphere)
- 18 modules per detection unit (DU)
- Building blocks of 115 DUs
- Under construction
 - 1 DU working in ARCA
 - 6 DUs working in ORCA

KM3NeT 2.0 Letter of Intent J.Phys.G 43 (2016) 8, 084001 arXiv:1601.07459

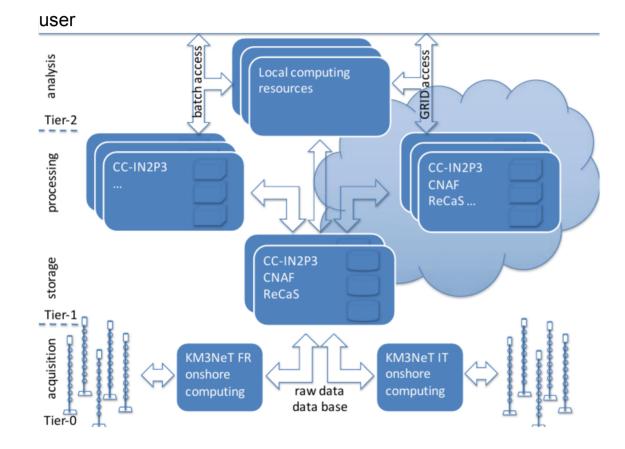
Scientific targets




One concept – two detectors

- High-Energy neutrino Astronomy (ARCA)
- Neutrino Oscillation Research (ORCA)

Two detectors – multiple targets


- Astrophysics: Galactic and extra-galactic neutrino sources, transients
- Dark matter & exotics: neutrinos produced e.g. by annihilation of WIMPs
- Neutrino physics: oscillation parameters, sterile neutrino searches etc.

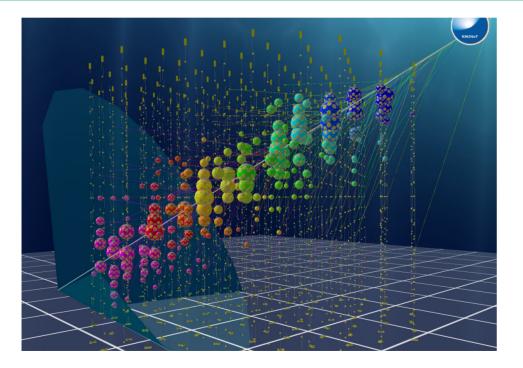
Data taking and processing

Data processing

Typical for particle physics

- High-volume data taking
- Triggering
- Processing: reconstruction & filtering

Event simulation


- Signal and background events
- Analogous processing to measurements
- → decentralized large data storage & processing needed

Data structure

"Full" event (i.e. particle detection!)

event identification	detector status	optimize the second strength streng
-------------------------	--------------------	--

"Reduced" event

	structed e prope	direction time energy, resolution				
Decl» [deg]» 19.5» -60.0»	RA» [deg]» 68.2 26.5	Nhit » [deg]» 21» » 33» »	Beta» » » 1.0»» 0.8»»	MJD [days] 54138.3105 54138.5830		
-29.8» -8.6» -32.3» -66.7»	82.1» 271.8» 261.4» 149.9»	34» » 41» » 45» » 52» »	0.3»» 0.3»» 0.5»» 0.8»»	54130.3830 54140.2299 54140.6394 54142.7042 54159.4158		
-13.0» -26.2» 23.5» -70.7»	93.6» 266.7» 121.7» 47.1» 284.4»	25» » 28» » 41» » 30» »	0.7»» 0.8»» 0.5»» 0.9»» 0.5»»	54160.4830 54160.6180 54161.4361 54165.5838 54169.0685		

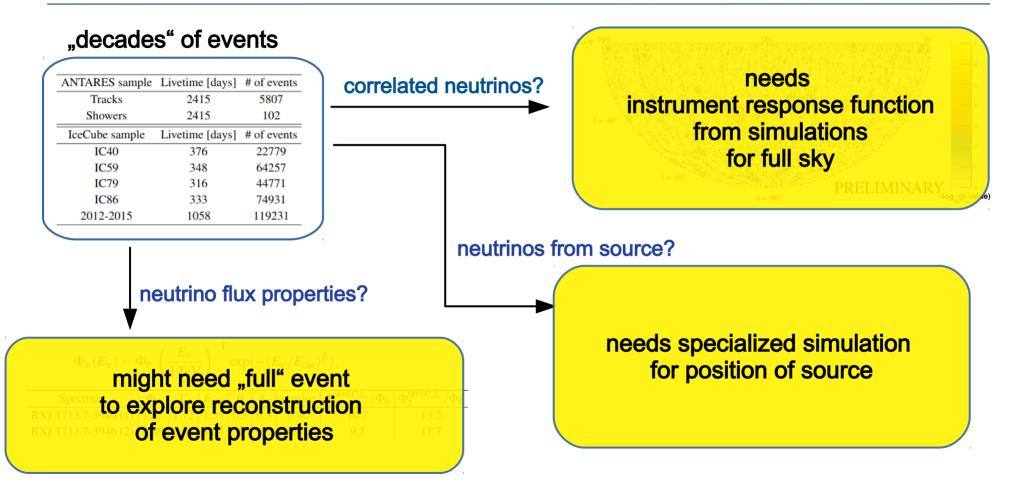
Use case

Test case for KM3NeT data publication

ANTARES 2007-2017 data catalogue

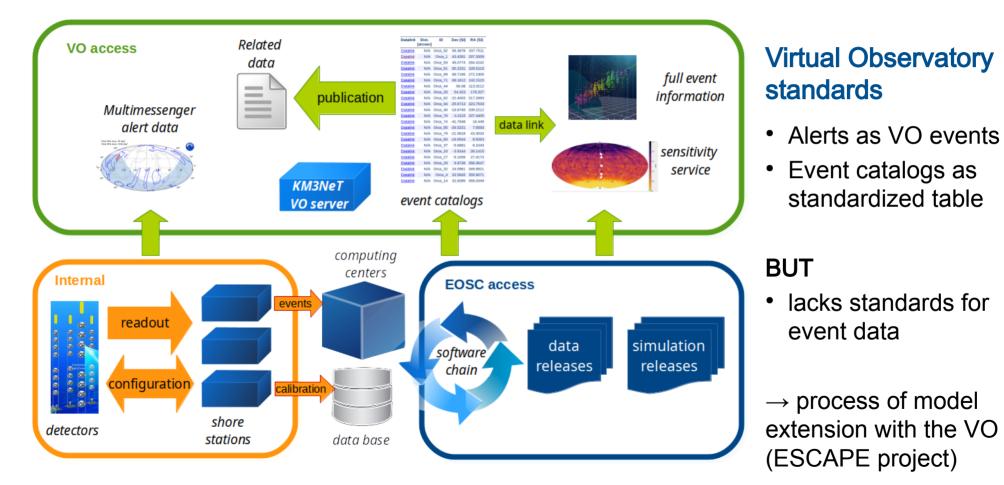
+ IceCube/ANTARES common analysis

Example: astrophysics study



"decade	s" of eve	ents			$\delta = 0^{\circ} \frac{24h}{h}$	17 (Y+ 3	12h				0	h 6
ANTARES sample	Livetime [days]	# of events	correlated r	neutrinos?			学校			111		5
Tracks	2415	5807			a a state the state		******	1-77	• •		31.94	
Showers	2415	102			$\delta = -30^{\circ}$	<u>ista</u>					TTP-1	
IceCube sample	Livetime [days]	# of events				1. 1. 1	14 24	11			1	3
IC40	376	22779					14-14-0				·	2
IC59	348	64257					$(X \mid Z)$			- de la cal		1
IC79	316	44771			$\delta = -60^{\circ}$				F	PRELIN	ЛІЛАН	RY_log_(p-value)
IC86	333	74931					$\delta = -90^{\circ}$		-			-log ₁₀ (p-value)
2012-2015	1058	119231										
	neutrinos from source?											
					Name	${oldsymbol \delta}[^\circ]$	lpha[°]	\hat{n}_s	Ŷ	p-value	$\Phi_{E_v^{-2.0}}^{90\%}$	$\Phi^{90\%}_{E_v^{-2.5}}$
ne	neutrino flux properties?			LHA120-N-157B	-69.16	84.43	-	-	-	3.6	0.9	
\bot			-		HESSJ1356-645	-64.50	209.00		3.1	0.18	6.2	1.4
					PSRB1259-63	-63.83	195.70	1.3	4.0	0.19	6.2	1.5
	$(F)^{-\Gamma}$				HESSJ1303-631 RCW86	-63.20 -62.48	195.74 220.68	- 1.0	-	- 0.20	3.7 6.3	0.9 1.5
$\Phi_{\nu}(E_{\nu}) = \Phi_0$	$\left(\frac{L_V}{1 T_{\rm e} V}\right)$ ex	$\exp(-(E_v/E_{\rm cut}))$	(β)),		HESSJ1507-622	-62.48	220.88	1.0	1.0	0.20	0.5 3.7	1.5
	$\langle 1 \text{ lev} \rangle$				HESSJ1507-022 HESSJ1458-608	-60.88		3.7	3.6	0.036	9.3	2.0
Spectrum Φ	$_0$ Γ $E_{\rm cut}$ β	\hat{n}_s p-value	$\Phi_{\rm S}^{90\%{\rm C.L.}}/\Phi_0$ $\Phi_L^{90\%{\rm C.L.}}/\Phi_0$	$\overline{\Phi_0}$	ESO139-G12	-59.94	264.41	-	-	-	3.7	1.0
RXJ 1713.7-3946 (1) 1.5		-	10.7 13.2		MSH15-52	-59.16	228.53	-	-	-	3.7	1.0
RXJ 1713.7-3946 (2) 0.8		0.3 0.41	9.7 11.7		HESSJ1503-582	-58.74	226.46	-	-	-	3.7	1.0

ANTARES and IceCube combined search for neutrino point-like and extended sources in the Southern Sky - arXiv:1908.07439, The Astrophysical Journal, 892:92 (2020) (12 pp)


Statistical interpretation of data

Astrophysics standards: VO

Background becomes signal

- Oscillation studies rely on atmospheric neutrinos → difficult scientific interpretation of data sets within the Virtual Observatory
- Dedicated simulations for dedicated analyses needed

 \rightarrow providing high-level derivatives of full data sets in standard formats + services for scientific interpretation

Providing workflows and software

Need to facilitate common development of interfaces within the respective communities

 \rightarrow sharing of software and implementation of use cases within the ESCAPE project (e.g. CTA+KM3NeT)

Working on the life cycle

Some upcoming software solutions

- Improving grid-computing capabilities (DIRAC)
- Implementing workflow management for data processing (CWL?)
- Developing standards for event data and interfaces for physics services (HDF5 for event data, docker containers)
- Integrating astrophysics data into the VO (DaCHS server suite)
- Providing example analyses (python-based, e.g. Jupyter-notebooks)

Thank you for your attention!

- More information on KM3NeT at www.km3net.org
- Virtual Observatory Server (test phase): http://vo.km3net.de/
- Dedicated software@git: https://github.com/KM3NeT
- ESCAPE project www.projectescape.eu