
Thoughts on pseudorandom number generation in massively
parallel platforms I

A. Augusto Alves Jr

Presented at Coffee-breaking meeting - KIT, Karlshuhe
May 7, 2020

1/10

• Overview

• Standard sequential design

• Naive parallel designs and their pitfalls

• Safe design

2/10

Overview

A pseudo-random number generators (PRNG) are algorithms for generating a sequence of
numbers whose properties approximate the properties of sequences of random numbers.

• The PRNG-generated sequence is completely determined by the PRNG’s seed.

• The PRNG-generated sequence has a finite length, called period of the PRNG.

• PRNG keeps an internal state, which advances every time an output is generated.

• PRNG user interface usually provides a void discart(size_t n) or
void jump_ahead(size_t n) method. Calling this method will advance the PRNG state n
times. Equivalent to calling the generator n times and discarding the result.

3/10

Standard sequential approach

This is the simplest and safest use case:

1 #include <random>
2 #include <iostream>
3
4 int main()
5 {
6 unsigned int seed = 1234; //seed defined in the general scope
7 std::mt19937 gen(seed); //prng instantiated in the general scope
8 std::uniform_real_distribution<> dis(1.0, 2.0);
9 for (int n = 0; n < 10000; ++n) {

10 std::cout << dis(gen) << std::endl;
11 }
12 ...
13 }

The prng’s state is stored in the main scope and will advance sequentially inside the loop. No
race-conditions or any other problem.

4/10

What about this?

Running in parallel using omp :

1 #include <random>
2 #include <iostream>
3
4 int main()
5 {
6 unsigned int seed = 1234; //seed defined in the general scope
7 std::mt19937 gen(seed); //prng instantiated in the general scope
8 std::uniform_real_distribution<> dis(1.0, 2.0);
9 #pragma omp parallel for //run in parallel

10 for (int n = 0; n < 10000; ++n) {
11 std::cout << dis(gen) << std::endl;
12 }
13 ...
14 }

• Which thread will update the state first?

• What will happen if two threads try to update the PRNG’s state at same time?

5/10

Comments

• If the PRNG implementation is thread safe, will be no crash, but numbers will be
generated out-order in relation to the thread index.

• If it is not thread safe:
• The PRNG’s state could be updated to an inconsistent state.
• Some members of the sequence could be repeated or miss completely.
• If no hard crash happens, problem could pass unnoticed for a while.
• The output pattern will depend from the system load etc...
• If threads as managed by the user (std::threads , pthreads, gpus,...) this design does not

work.

6/10

A safer design I

Generate sequentially, store and use in parallel:

1 #include <random>
2 #include <iostream>
3
4 int main()
5 {
6 unsigned int seed = 1234; //seed defined in the general scope
7 std::mt19937 gen(seed); //prng instantiated in the general scope
8 std::uniform_real_distribution<> dis(1.0, 2.0);
9 std::vector<double> rnumbers(10000);//allocate memory at once!

10 for (int n = 0; n < 10000; ++n) {
11 rnumbers.push_back(dis(gen));
12 }
13 #pragma omp parallel//run in parallel
14 ...
15 }

• Fine, but can be slow if is not possible to pre-allocate the container.
• Puts pressure on the memory and CPU-caches and can defeat the efficiency gains of

concurrency itself.
• Sooner or later a huge reallocation will be necessary.

7/10

A safer design II

Run an PRNG instance of per iteration, setting a different seed:

1 #include <random>
2 #include <iostream>
3
4 int main()
5 {
6 unsigned int seed = 1234; //seed defined in the general scope
7 #pragma omp parallel//run in parallel
8 for (int n = 0; n < 10000; ++n) {
9 std::mt19937 gen(seed+n); //prng instantiated in the general scope

10 std::uniform_real_distribution<> dis(1.0, 2.0);
11 std::cout << dis(gen) << std::endl;
12 }
13 ...
14 }

• Now the iterations are completely independent and no race condition should happen, but then
potential problems with seeding show up:

• Different seeds does not guarantees independent streams.
• Certain PRNGs need to recover from “bad” seeds. Even worst, the recovery period depends on

seed value.
8/10

The correct design

1 #include <random>
2 #include <iostream>
3
4 int main()
5 {
6 unsigned int seed = 1234; //seed defined in the general scope
7
8 #pragma omp parallel//run in parallel
9 for (int n = 0; n < 10000; ++n) {

10 std::mt19937 gen(seed); //prng instantiated in the general scope
11 gen.discard(n); //advance the state
12 std::uniform_real_distribution<> dis(1.0, 2.0);
13 std::cout << dis(gen) << std::endl;
14 }
15 ...
16 }

• Now the iterations are completely independent and no race condition should happen.
• No problems with seeding.
• What could wrong this? Hint: it is starts with “.d”...

9/10

For the next meeting

• Discuss multithread backends explicitly managed by the user: std::thread , GPUs, TBB,
etc.

• Present some measures of efficiency.

• Compare different PRNGs.

10/10

