## New LHC Simulation Methods How to GAN

#### Ramon Winterhalder

#### ITP HEIDELBERG



based on 1907.03764, 1912.0047 and 1912.08824 with Marco Bellagente, Anja Butter, Gregor Kasieczka and Tilman Plehn

## The HEP trinity



Neural networks for precision simulations

#### Problems in MC simulations

- High-dimensional phase space
- Low unweighting efficiency
- Slow detector simulations

#### Solution with neural networks

- Flexible parametrisation
- Automatic adaption
- Fast evaluation
- Great interpolation properties

### Generative Adversarial Networks

### GAN algorithm

- Training data: true events {x<sub>T</sub>}
   Output data: generated events {x<sub>G</sub>}
- Discriminator distinguishes  $\{x_T\}, \{x_G\} [D(x_T) \rightarrow 1, D(x_G) \rightarrow 0]$

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_T} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_G} \xrightarrow{D(x) \to 0.5} -2\log 0.5$$

• Generator fools discriminator  $[D(x_G) \rightarrow 1]$ 

$$L_G = \left\langle -\log D(x) \right\rangle_{x \sim P_G}$$

 $\Rightarrow$  New statistically independent samples



## GANgogh

#### Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier, 2018]

- Trained on 15,000 portraits
- Sold for \$432,500
- New independent potrait!



### GANs at the LHC

#### A lot of experience as community [since 2017]

- Jet images [1701.05927, 1909.01359]
- Calorimeters [1705.02355, 1712.10321, 1805.00850, 1807.01954, ATL-SOFT-PUB-2018-001/2019-007, 2005.05334]
- Event generation [1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103]
- Unfolding [1806.00433, 1912.0047]
- EFT models [1809.02612]
- Mass templates [1903.02556]
- Event subtraction [1912.08824]
- •

### 1 - How to GAN LHC events

#### Idea: generate hard process

- Realistic LHC final state  $t\bar{t} 
  ightarrow 6$  jets [1907.03764]
- Flat observables flat √
- Systematic undershoot in tails [10-20% deviation]





### 1 - How to GAN LHC events

#### Idea: generate hard process

- Realistic LHC final state  $t\bar{t} 
  ightarrow 6$  jets [1907.03764]
- Flat observables flat √
- Systematic undershoot in tails [10-20% deviation]
- Sharp phase-space structures √ [additional Loss → encodes physics]





### 1 - How to GAN LHC events

#### Idea: generate hard process

- Realistic LHC final state  $t\bar{t} 
  ightarrow 6$  jets [1907.03764]
- Flat observables flat √
- Systematic undershoot in tails [10-20% deviation]
- Sharp phase-space structures √ [additional Loss → encodes physics]
- 2D correlations √





### 2 - How to GAN event subtraction

#### Idea: sample based subtraction of distributions [1912.08824]

Beat bin-induced statistical uncertainty [interpolation of distributions]

$$\Delta_{B-S} = \sqrt{n_B^2 N_B + n_S^2 N_S} > \max(\Delta_B, \Delta_S)$$

- Many applications:
  - Soft-collinear subtraction, multi-jet merging, on-shell subtraction
  - Background subtraction [4-body decays → preserves correlations]



### 2 - How to GAN event subtraction

#### Idea: sample based subtraction of distributions [1912.08824]

Beat bin-induced statistical uncertainty [interpolation of distributions]

$$\Delta_{B-S} = \sqrt{n_B^2 N_B + n_S^2 N_S} > \max(\Delta_B, \Delta_S)$$

- Many applications:
  - Soft-collinear subtraction, multi-jet merging, on-shell subtraction
  - Background subtraction [4-body decays → preserves correlations]
- Example: event-based background subtraction → generate Z-Pole events [+ interference]



### 3 - How to GAN away detector effects

### Idea: invert Markov process [1912.0047] Detector simulation • Typical Markov process • Inversion possible, in principle Reconstruct parton level $pp \rightarrow ZW \rightarrow (ll)(jj)$

• Use fully conditional GAN (FCGAN)





### 3 - How to GAN away detector effects

#### Idea: invert Markov process [1912.0047]

#### **Detector simulation**

- Typical Markov process
- Inversion possible, in principle

Reconstruct parton level  $pp \rightarrow ZW \rightarrow (ll)(jj)$ 

- Use fully conditional GAN (FCGAN)
- Inversion works √
- BSM injection √
  - train: SM events
  - test: 10% events with W' in s-channel





### Outlook

### LHC physics is big data!

- Directly training on MC/data
  - $\rightarrow$  GAN reproduces full phase-space structure
- Smooth interpolations
  - $\rightarrow$  Sample based subtraction methods
- Latent/phase space structures
  - $\rightarrow$  Locality preserving unfolding (FCGAN)

### Open questions

- Uncertainties in GANs?
- Ultimate precision?

# Appendix