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Parton Shower

» Soft and collinear regions are of special interest (qf/j =0):
Sij = (@i + 4;)* = 2¢5- a5 = 240} [1 — cos V5]

> Amplitudes become singular/enhanced when S;; — 0
(origin of large logarithms)

/ ddy

2 n
» Probabilistic description of parton emissions

» Can iterate this process for multiple emissions
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Motivation

General Idea: investigate novel routes in understanding soft and
collinear dynamics in multi-parton final states.

>
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Going beyond iterated 1 — 2

o / higher logarithmic accuracy
splittings in parton showers

&
Combine with global recoil scheme Systematic expansion
Address non-global observables to handle uncertainties

Include colour and spin correlations

Refine ad hoc models of MC-programs,
e.g. azimuthal correlations

Define language for connecting FO to parton showers
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Project overview

Building blocks:

1. Amplitude evolution, link to resummation in existing showers
[Forshaw, Holguin, SP— 2003.06400 & JHEP 08 (2019) 145]

2. Virtual corrections (Ruffa, SP)

Real corrections (ML, SP, Emma Simpson Dore)
1 this talk

©

Derive generalized splitting functions (input for parton showers)
Only take collinear/soft limits at a late stage

Keep interpolation over whole phase space

Include overlapping singular regions

Understand factorization on a diagrammatic level

vVvyYVvyyVvVvyy
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One emission example



One emission example
Setup

» | eading collinear-singular behavior for gluon emission:

dae*e*%g+2jets as 1

dzdcos

—e >

~ O2jets X CF p(Z)

T sin? 6
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One emission example
Setup

» | eading collinear-singular behavior for gluon emission:

do’e*e*%g#»Qjcts % 1
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One emission example
Setup

» | eading collinear-singular behavior for gluon emission:

dOete— s g10i as 1 -
g+2jets __ S
————— > N O9jets X C’Ff P(Z)
dzdcos @

T sin? 6
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One emission example

Partitioning

» Extract IR-singular behavior (S;, = 2¢;-k):

ql
<.

SN\
A

B Nint Nself N
=) M + M
Tl

> Note: Nnt/seif gre operators in colour and spin space
» Introduce partitioning (or weighting factors):

1— Sik Sik
Sik +Sjr  Sik + Sk
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One emission example

Partitioning

» Extract IR-singular behavior (S;x = 2¢;-k)

O & 1)
% op0° %
= Bl
i#j é 7 é
I
- Nint Nself N
;M (Siksjk + oo Y

> Note: Nnt/seif gre operators in colour and spin space
» Introduce partitioning (or weighting factors)

1— Sik Sik
Sik +Sjr  Sik + Sk
Nint i Nint 1 Nint
SikSik  Sik Sik + Sjk

Sik Sik + Sjk
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One emission example
Splitting kernels

» Collect singular structures in splitting kernels

1 Nine -
Uy = o o )
k)7 = 5o Sik + Sjk
——
Sik—
non-singularin _or
jk—éO

» Sum of kernels smoothly approaches soft singular behavior
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One emission example
Splitting kernels

» Collect singular structures in splitting kernels

1 Nine -
Uy = o o )
k)7 = 5o Sik + Sjk
——
non-singularin _or
jk_>0

» Sum of kernels smoothly approaches soft singular behavior

» Nint/self are operators in colour and spin-space
= Keep this information in kernels

> Yields potential for tracking colour correlations in PS
» Aim at Algorithmic generalization for higher emissions

» Recover splitting functions and Eikonal factors in
collinear/soft limits
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Momentum mapping



Momentum mapping

Adding emissions

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = >~ p; + >, p
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Momentum mapping

Adding emissions

add emissions

Spe)

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = >". p; + >, p»

» Add emissions to the process with:

1. Momentum conservation: > . ¢: + >,  ku +>., ¢ = Q
2. On-shellness of all partons '
3. Parametrization of soft & collinear behavior for any # of emissions
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Momentum mapping

A

qr = —Pr
ar

A = ~ = .
ky = a [Om pi + ,31'1 n; + \/ @i nfi] , A= Zail, ﬂz’l = (1 - Ai)ﬂu
l
A ~ -
g = — [(1 — A)pi + (yi — X Bu)ni — X\ caBu nﬂ
ar 1 1
» Lorentz transformation A = non-trivial global recoil
» Decomposition w/ light-like momentum n; and n:;-p; = ni;-n; =0
> k2 = 0implies (n;;)% = —2p;-n;
> ¢? = 0 fixes y; in terms of the «;; and By
> Need o? = (Q + N)?/Q? for momentum conservation

Q=) ¢+> g+ ki= %[Zpr +> (pr,:+y7:nq:)]
T 0 iyl 7 i

~—~
Q N
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Momentum mapping

Soft and collinear scaling

» LT A and scaling «;, do not spoil analysis of amplitudes
» Soft and collinear behavior studied via scaling and A — 0:

kit ‘ (i, nis, M) ‘ (it Bits yi)
(forward) collinear | Q(1,2\2,\) | (1,A%,\?)
soft QAN | (AN

» Induces collinear scaling of propagators

1 11
(@i +>ka)®  vi2pin; A2 y; 2p; -

» Take limits in splitting kernels to find leading singular behavior
» Use general set of power counting rules similar to SCET
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General Algorithm
and two emissions



General Algorithm
Amplitude

» Devise general setup for extracting singular behavior for &

emissions ary
a1
aryg,
k
singular terms
—m
p=1 r
arpy
dn+k
ITpip

» Write amplitude in terms of splitting operators and factorized
matrix element

Mok (a1 dnrr)) ZZSPW\ Ar1e)  SP(rga e lrpey)
p=1 {r}

|Mn(q1a () q(rn\...|r1@1)a '~',q(rp1|...\rpgp)» '~'7Qn+k)>
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General Algorithm
Amplitude squared

» Study iterative behavior of

emissions A

» Single out topologies with leading e\@
singular behavior @
(via # of unresolved partons)

» Examples for two emissions:

(?

A

\

A q’__\\
AS
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Two emissions

» For a given number of partons, find
categorization of singular configs

» Read:
(i 171l k) = Sijk = (¢:+¢5+qr)*> =0
» Triple collinear and double-soft
contributions

Construct partitioning factors from

1

1
X s——<F—<—
SijSkiSijkSjkl

illgllk
illgllt
il k|
gl kI
Gl g)s (k11D
Gl E),G D
@D, G k)

SijSijk
Skl
Sk1Sjkl
S5 Skt
X
X

_ M?(SuSjk + SijSijr + SijeSikt) + (Ski + Si)SijkSik

= non-singular in any configuration
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Cross Check: Two Emission Splitting Function

Reproduced from general two-emission kernel which includes
soft-limit too (Here: in lightcone-gauge)

8 g ) . N
B < Awas Me) CACp <R§2§n7Ab>>¢i o) (5“ 3/2) _
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Conclusions

Goal: study leading singular behavior for multiple emissions
(for applications in parton showers and beyond)
» Momentum mapping for exposing collinear and soft factorization
» Global recoil via Lorentz transformation
» Partitioning algorithm to separate overlapping singularities
» Comprehensive framework for organizing singular behavior
>

General Sudakov-like momentum decomposition for power
counting rules = simplification of amplitudes
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Relation to fixed order

A variety of e.g. NNLO QCD subtraction methods are available (on
the cross-section level).



Relation to fixed order

Well established subtraction schemes at NLO

o Frixione-Kunst-Signer (FKS) subtraction Frixione, Kunszt, Signer
o Catani-Seymour (CS) Dipole subtraction Catani, Seymour
» Nagy-Soper subtraction Nagy, Soper
Many methods available at NNLO
© Antenna subtraction Gehrmann De Ridder, Gehrmann, Glover, Heinrich, et al.
© CoLoRFul subtraction Del Duca, Duhr, Kardos, Somogyi, Troscanyi, et al.
® Sector-improved residue subtraction Czakon et al.
» Nested soft-collinear subtraction Melnikov et al.
® Local analytic sector subtraction Magnea, Maina, Torrielli, U. et al.
e qT-slicing Catani, Grazzini, et al.
® N-jettiness slicing Boughezal, Petriello, et al.
® Projection to Born Cacciari, Salam, Zanderighi, et al.
® Sector decomposition Anastasiou, Binoth, et al.
o E-prescription Frixione, Grazzini
® Unsubtraction |5 "cgirati @ Vienna CES 2019) Radrigolefial

© Geometric Herzog



Relation to fixed order

A variety of e.g. NNLO QCD subtraction methods are available (on
the cross-section level).

Instead of adding to the list, want to:
» Combine real and virtual contributions differentially
» Smooth phase-space coverage
» Let a MonteCarlo do the integrals
» Still keep a bridge to the fixed order and EFT side
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Phase space

» Can write down factorized phase space using momentum
mapping

d¢ ({ai}s, {ar}r, {ki}E,;1Q) = dé ({p}r|Pr) o’ "= (21)%6(Ps + Pr — Q)

9({7}s,Gr)
o({P}s, Pr)

w(PR, am)

dm ﬁ?) 0
= = S} dp; O(q;
< | R — (Qﬁ)g[p (a0

11 [drales).

IEE;

» Emission phase space:

Ak = |T (i, Bir, Q)| dag dBy A3,

» Computable in d dimensions:

— (2p;- nz) En

(azlﬁzl 2

[dkzl] = W (azl) (6zl) 4 dall dﬁzl de 3
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