Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections

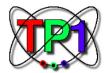
Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections

A talk by Daniel Moreno Torres

on behalf of T. Mannel, D. Moreno and A. Pivovarov based on hep-ph/2004.09485

> In collaboration with A. Lenz, M. L. Piscopo and A. V. Rusov IPPP in Durham University

> > June 17, 2020



Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections

Outline I

1 Aim and Motivation

- 2 The effective electroweak Lagrangian
- **3** HQE for the Total Decay rate
- **4** Matching of $1/m_b^3$ operators
 - Matching of two-quark operators
 - Matching of four-quark operators

5 Renormalization

6 Results

7 Conclusions

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \square Aim and Motivation

Aim

Aim: Compute the Darwin (ρ_D) term contribution $(1/m_b^3 \text{ correction})$ to the inclusive non-leptonic *B*-hadron decay rate originated by the flavor changing transition $b \to c\bar{q}_1q_2$, where $q_1 = u, c$ and $q_2 = d, s$.

Key ingredients for the computation:

- Optical Theorem (OT).
- Heavy Quark Expansion (HQE).
- Local expansion of the quark propagator in the external gluon field/background field method (BFM).
- Dimensional regularization (DR) in $D = 4 2\epsilon$.
- \blacksquare $\overline{\rm MS}$ renormalization scheme: $\bar{\mu}^{-2\epsilon}=\mu^{-2\epsilon}(e^{\gamma_E}/4\pi)^{-\epsilon}$

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections Aim and Motivation

Motivation

Motivation: Experimental precision is so high that it is sensitive to the ρ_D contribution. Even higher precision seems to be achievable from LHCb and ATLAS. The theory precision should live up to these experimental advancements.

The current (2019) experimental averages obtained by the Heavy Flavor Averaging Group (HFLAV) of the *B*-hadron lifetime ratios are¹:

$$\frac{\tau(B_s)}{\tau(B_d)}\Big|^{\exp} = 0.994 \pm 0.004 \,, \quad \frac{\tau(B^+)}{\tau(B_d)}\Big|^{\exp} = 1.076 \pm 0.004 \,, \quad \frac{\tau(\Lambda_b)}{\tau(B_d)}\Big|^{\exp} = 0.969 \pm 0.006 \,,$$

whereas the current status of the theoretical predictions is²:

$$\frac{\tau(B_s)}{\tau(B_d)} \Big|^{\text{th}} = 1.0006 \pm 0.0025 \,, \quad \frac{\tau(B^+)}{\tau(B_d)} \Big|^{\text{th}} = 1.082^{+0.022}_{-0.026} \,, \quad \frac{\tau(\Lambda_b)}{\tau(B_d)} \Big|^{\text{th}} = 0.935 \pm 0.054 \,,$$

¹Y. S. Amhis et al., hep-ex/1909.12524.

²A. Lenz, Int. J. Mod. Phys., **A**30, 1543005 (2015); M. Kirk et al., JHEP 068, (2017).

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \Box The effective electroweak Lagrangian

The effective electroweak Lagrangian

The effective weak interaction Lagrangian describing $b \to c \bar{q}_1 q_2$ transitions reads

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} V_{q_1 q_2}^* (C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2) + \text{h.c}$$
(1)

where G_F is the Fermi constant, $V_{q_1q_2}$ are CKM matrix elements, $C_{1,2}$ are Wilson coefficients and $\mathcal{O}_{1,2}$ are the four-quark operators

$$\mathcal{O}_1 = (\bar{b}\Gamma_\mu c)(\bar{q}_1\Gamma^\mu q_2), \quad \mathcal{O}_2 = (\bar{b}\Gamma_\mu q_2)(\bar{q}_1\Gamma^\mu c), \qquad (2)$$

with $\Gamma_{\mu} = \gamma_{\mu}(1-\gamma_5)/2$. Note that

- We consider two Cabibbo favoured decay channels, $(q_1, q_2) = (u, d)$ and $(q_1, q_2) = (c, s)$.
- The b and c-quarks have mass m_b and m_c , and the u, d, s-quarks to be massless.

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \square HQE for the Total Decay rate

HQE for the Total Decay rate

According to the **OT** $(\hat{T}^{\dagger}\hat{T} = 2\text{Im}\,\hat{T})$ the total width for the inclusive decay of a *B*-hadron can be computed from the discontinuity of the forward scattering matrix element³

$$\Gamma(B \to X) = \frac{1}{2M_B} \langle B(p_B) | \operatorname{Im} \hat{T}(B \to X \to B) | B(p_B) \rangle$$
(3)

 Γ is not tractable in perturbative QCD (all the scales are involved).

However, if B is a heavy flavoured hadron we can write the original quark fields to effective fields within HQET⁴:

$$b(x) = e^{-im_b v \cdot x} b_v(x)$$

$$= e^{-im_b v \cdot x} \left[1 + \frac{\not{\pi}_{\perp}}{2m_b} - \frac{(v \cdot \pi) \not{\pi}_{\perp}}{4m_b^2} + \frac{\not{\pi}_{\perp} \not{\pi}_{\perp}}{8m_b^2} + \mathcal{O}\left(\frac{1}{m_b^3}\right) \right] h_v(x)$$
(4)

³Transition operator: $\hat{T} = i \int dx \mathcal{T} \{ \mathcal{L}_{\text{eff}}(x), \mathcal{L}_{\text{eff}}(0) \}$ ${}^{4}\pi_{\mu} = iD_{\mu} = i\partial_{\mu} + g_{s}A^{a}_{\mu}T^{a} \text{ and } \pi^{\mu} = v^{\mu}(v\pi) + \pi^{\mu}_{\perp}$ Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections HQE for the Total Decay rate

HQE for the Total Decay rate

That singles out a large phase factor and allows to perform an OPE in $1/m_b$ (HQE)

$$\Gamma(B \to X) = \Gamma^{0} \left[C_{0} - C_{\mu\pi} \frac{\mu_{\pi}^{2}}{2m_{b}^{2}} + C_{\mu G} \frac{\mu_{G}^{2}}{2m_{b}^{2}} - C_{\rho D} \frac{\rho_{D}^{3}}{2m_{b}^{3}} - C_{\rho LS} \frac{\rho_{LS}^{3}}{2m_{b}^{3}} + \sum_{i,q} C_{4F_{i}}^{(q)} \frac{\langle \mathcal{O}_{4F_{i}}^{(q)} \rangle}{4m_{b}^{3}} \right]$$
(5)

- factorized short-distance effects (Wilson coefficients, C_i) which are treatable in perturbation theory, e.g. C_{ρ_D} .
- non perturbative effects encoded in the expectation values of local operators, e.g. $\rho_D^3 = -\frac{1}{2} \frac{1}{2M_B} \langle B(p_B) | \bar{h}_v[\pi_{\perp \mu}, [\pi_{\perp}^{\mu}, v \cdot \pi]] h_v | B(p_B) \rangle$.

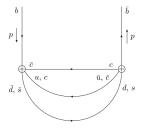
where μ_{π}^2 , μ_G^2 , ρ_D^3 and ρ_{LS}^3 are matrix elements of two-quark operators and $\langle \mathcal{O}_{4F_i}^{(q)} \rangle$ of four-quark operators.

We focus on $X = \text{hadrons: } \Gamma^0 = G_F^2 m_b^5 |V_{cb}|^2 |V_{q_1 q_2}|^2 / 192\pi^3.$

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections \square Matching of $1/m_b^3$ operators \square Matching of two-quark operators

Matching of two-quark operators: Generalities

In order to compute the matching coefficients in the HQE of the decay rate we need to compute the imaginary part of 2-loop diagrams of the form:



We develop a tool based on Mathematica which makes use of the packages:

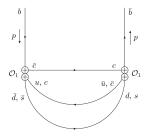
- **Tracer**: to deal with four vectors and gamma matrices.
- LiteRed: to reduce integrals to a small set (indeed only one) of Master Integrals (MIs).
- **HypExp**: to perform the ϵ expansion of Hypergeometric functions.

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections

 \square Matching of $1/m_b^3$ operators

Matching of two-quark operators

Matching of two-quark operators: $\mathcal{O}_1 \otimes \mathcal{O}_1$



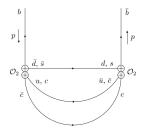
- **Semi-leptonic like**: a single gluon can only be emitted from the $\bar{b}cb$ -line due to the color structure. In the BFM, only expansion of the c-quark propagator.
- Standard: we can compute it with our technology or take it from the literature $(b \rightarrow c \ell \bar{\nu}_{\ell})$.
- **IR safe**: due to the *c*-quark is massive.

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_{O}^{3})$ corrections

 \square Matching of $1/m_h^3$ operators

Matching of two-quark operators

Matching of two-quark operators: $\mathcal{O}_2 \otimes \mathcal{O}_2$



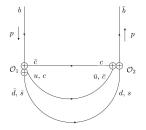
- Semi-leptonic like: a single gluon can only be emitted from the $\bar{b}q_2b$ -line due to the color structure. In the BFM, only expansion of the q_2 -quark propagator.
- **Standard:** we can compute it with our technology or take it from the literature $(b \to u\bar{\ell}\nu_{\ell})$.
- **IR divergent**: ρ_D coefficient is IR divergent due to q_2 is massless (expansion of propagators makes the diagram more IR).
- **Renormalization**: is required \Rightarrow renormalization scheme dependence.

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^2)$ corrections

 \square Matching of $1/m_h^3$ operators

Matching of two-quark operators

Matching of two-quark operators: $\mathcal{O}_1 \otimes \mathcal{O}_2$



- **Non-leptonic**: color structure allow a single gluon to be emitted from all quark propagators (expansion of all propagators).
- **IR divergent**: ρ_D coefficient is IR divergent due to q_1 and q_2 are massless (expansion of propagators makes the diagram more IR).
- **Renormalization**: is required \Rightarrow renormalization scheme dependence.

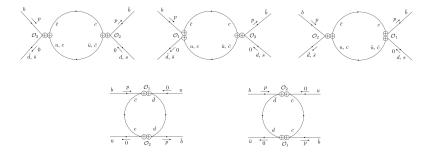
Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \square Matching of $1/m_b^3$ operators \square Matching of four-quark operators

Matching of four-quark operators

IR poles in $C_{\rho_D} \Rightarrow$ UV mixing of $\langle \mathcal{O}_{4F_i}^{(q)} \rangle$ and ρ_D .

Renormalization of C_{ρ_D} requires knowing the coefficients of $\mathcal{O}_{4F_i}^{(q)}$.

That requires the computation of the following 1-loop diagrams.



Inclusive non-leptonic decays of heavy quarks: completing the ${\cal O}(1/m_Q^3)$ corrections

 \square Matching of $1/m_b^3$ operators

Matching of four-quark operators

Matching of four-quark operators

The relevant four-quark operators are

$b \to c \bar{u} d$	$b \to c \bar{c} s$
$\mathcal{O}_{4F_1}^{(d)} = (\bar{h}_v \Gamma_\mu d) (\bar{d} \Gamma^\mu h_v)$	$\mathcal{O}_{4F_1}^{(s)} = (\bar{h}_v \Gamma_\mu s)(\bar{s} \Gamma^\mu h_v)$
$\mathcal{O}_{4F_2}^{(d)} = (\bar{h}_v P_L d) (\bar{d} P_R h_v)$	$\mathcal{O}_{4F_2}^{(s)} = (\bar{h}_v P_L s)(\bar{s} P_R h_v)$
$\mathcal{O}_{4F_1}^{(u)} = (\bar{h}_v \Gamma^\sigma \gamma^\mu \Gamma^\rho u) (\bar{u} \Gamma_\sigma \gamma_\mu \Gamma_\rho h_v)$	-
$\mathcal{O}_{4F_2}^{(\bar{u})} = (\bar{h}_v \Gamma^\sigma \not\!\!\!/ \Gamma^\rho u) (\bar{u} \Gamma_\sigma \not\!\!\!/ \Gamma_\rho h_v)$	

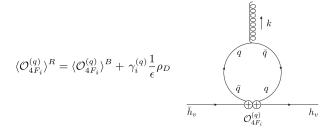
General remarks:

- Coefficients are computed in $D = 4 2\epsilon$ dimensions.
- Coefficients are functions of C_1 , C_2 , $r = m_c^2/m_b^2$, D and μ .
- The pole in $C^B_{\rho_D}$ is proportional to a combination of $C^{(q)}_{4F_i}$.
- In principle, $\mathcal{O}_{4F_i}^{(u)}$ can not be reduced to the form of e.g. $\mathcal{O}_{4F_i}^{(d)}$ in D dimensions unlike in D = 4.
- Still we can reduce to this basis by introducing evanescent operators \Rightarrow additional scheme dependence (choice is not unique).

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \Box Renormalization

Renormalization

The IR singularity in C_{ρ_D} is canceled by the UV pole coming from the operator mixing



where $\gamma_i^{(q)}$ is the anomalous dimension. The counterterm of C_{ρ_D} in the $\overline{\text{MS}}$ renormalization scheme for $b \to c\bar{u}d$ and $b \to c\bar{c}s$, respectively

$$\delta C_{\rho_D}^{\overline{\text{MS}}}(\mu) = \left(C_{4F_1}^{(d)} - \frac{1}{2} C_{4F_2}^{(d)} + 16 C_{4F_1}^{(u)} + 4 C_{4F_2}^{(u)} \right) \frac{1}{48\pi^2 \epsilon} \mu^{-2\epsilon} \left(\frac{e^{\gamma_E}}{4\pi} \right)^{-\epsilon}, \quad (6)$$

$$\delta C_{\rho_D}^{\overline{\mathrm{MS}}}(\mu) = \left(C_{4F_1}^{(s)} - \frac{1}{2}C_{4F_2}^{(s)}\right) \frac{1}{48\pi^2\epsilon} \mu^{-2\epsilon} \left(\frac{e^{\gamma_E}}{4\pi}\right)^{-\epsilon}, \tag{7}$$
where $C_{\rho_D}^B = C_{\rho_D}^{\overline{\mathrm{MS}}}(\mu) + \delta C_{\rho_D}^{\overline{\mathrm{MS}}}(\mu).$

$$14/18$$

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \Box_{Results}

Results for the $b \rightarrow c\bar{u}d$ coefficients

$$\begin{split} C_{\rho_D}^{\overline{\text{MS}}} &= C_1^2 \bigg[-77 + 88r - 24r^2 + 8r^3 + 5r^4 - 48\ln(r) - 36r^2\ln(r) \bigg] \\ &+ \frac{2}{3} C_1 C_2 \bigg[-53 + 16r + 144r^2 - 112r^3 + 5r^4 + 96(-1+r)^3\ln(1-r) \\ &- 12(4 - 9r^2 + 4r^3)\ln(r) - 48(-1+r)^3\ln\bigg(\frac{\mu^2}{m_b^2}\bigg) \bigg] \\ &+ C_2^2 \bigg[-45 + 16r + 72r^2 - 48r^3 + 5r^4 + 96(-1+r)^2(1+r)\ln(1-r) \\ &+ 12(1 - 4r)r^2\ln(r) - 48(-1+r)^2(1+r)\ln\bigg(\frac{\mu^2}{m_b^2}\bigg) \bigg], \end{split}$$
(8)
where $r = m_c^2/m_b^2.$

Inclusive non-leptonic decays of heavy quarks: completing the $O(1/m_Q^3)$ corrections \Box_{Results}

Results for the $b \rightarrow c\bar{c}s$ coefficients

$$C_{\rho_D}^{\overline{\text{MS}}} = C_1^2 \left[(-77 - 2r + 58r^2 + 60r^3)z + 24(2 - 2r - r^2 + 4r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \\ + C_2^2 \left[24(-4 + 8r + 7r^2 + 8r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \\ + z \left(-45 - 58r + 106r^2 + 60r^3 - 96\ln(r) + 192\ln(z) - 48\ln\left(\frac{\mu^2}{m_b^2}\right) \right) \\ + \frac{2}{3}C_1C_2 \left[24(-6 + 10r - 5r^2 + 20r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \\ + z \left(75 - 178r + 250r^2 + 60r^3 - 96\ln(r) + 192\ln(z) - 48\ln\left(\frac{\mu^2}{m_b^2}\right) \right) \\ = C_1^2 \left[24(-6 + 10r - 5r^2 + 20r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \\ + z \left(75 - 178r + 250r^2 + 60r^3 - 96\ln(r) + 192\ln(z) - 48\ln\left(\frac{\mu^2}{m_b^2}\right) \right) \\ = C_1^2 \left[C_1^2 \left[24(-6 + 10r - 5r^2 + 20r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \right] \\ + z \left(75 - 178r + 250r^2 + 60r^3 - 96\ln(r) + 192\ln(z) - 48\ln\left(\frac{\mu^2}{m_b^2}\right) \right) \\ = C_1^2 \left[C_1^2 \left[C_1^2 \left[24(-6 + 10r - 5r^2 + 20r^3 + 5r^4) \ln\left(\frac{1+z}{1-z}\right) \right] \right] \\ + z \left(75 - 178r + 250r^2 + 60r^3 - 96\ln(r) + 192\ln(z) - 48\ln\left(\frac{\mu^2}{m_b^2}\right) \right) \\ = C_1^2 \left[C_$$

where $r = m_c^2/m_b^2$ and $z = \sqrt{1-4r}$.

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections \Box Conclusions

Conclusions

- We completed the $1/m_b^3$ corrections to the inclusive non-leptonic width of *B*-hadrons T. Mannel et. al., hep-ph/2004.09485.
- C_{ρ_D} depends on the calculational scheme: renormalization scheme and treatment of the Dirac algebra in D dimensions (evanescent operators).
- After proper definition of the evanescent operators (validity of Fierz transformation at 1-loop order), our results agree with A. Lenz et. al., hep-ph/2004.09527 where the coefficients are computed in D = 4.
- We obtain analytical results.
- C_{ρ_D} turns out to be sizable (gives a correction to the tree level values of $C_{4F_i}^{(q)}$ of $\sim 7\%$ for $b \to c\bar{c}s$ and of $\sim 1\%$ for $b \to c\bar{u}d$)
- Relevant for the precise determination of lifetime ratios.

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_Q^3)$ corrections \square Conclusions

Questions

Inclusive non-leptonic decays of heavy quarks: completing the ${\cal O}(1/m_Q^3)$ corrections

Backup

Inclusive non-leptonic decays of heavy quarks: completing the $\mathcal{O}(1/m_{O}^{2})$ corrections

Operators and non-perturbative parameters

$$\mathcal{O}_0 = \bar{h}_v h_v \,, \tag{10}$$

$$\mathcal{O}_v = \bar{h}_v (v \cdot \pi) h_v , \qquad (11)$$

$$\mathcal{O}_{\pi} = \bar{h}_v \pi_{\perp}^2 h_v \,, \tag{12}$$

$$\mathcal{O}_{G} = \frac{1}{2} \bar{h}_{v} [\not{\pi}_{\perp}, \not{\pi}_{\perp}] h_{v} = \frac{1}{2} \bar{h}_{v} [\gamma^{\mu}, \gamma^{\nu}] \pi_{\perp \mu} \pi_{\perp \nu} h_{v} , \qquad (13)$$

$$\mathcal{O}_D = \bar{h}_v[\pi_{\perp \, \mu}, [\pi_{\perp}^{\mu}, v \cdot \pi]]h_v \,, \tag{14}$$

$$\mathcal{O}_{LS} = \frac{1}{2} \bar{h}_v [\gamma^{\mu}, \gamma^{\nu}] \{ \pi_{\perp \, \mu}, [\pi_{\perp \, \nu}, v \cdot \pi] \} h_v \,, \tag{15}$$

$$\langle B(p_B)|\bar{b}\psi b|B(p_B)\rangle = 2M_B, \qquad (16)$$

$$-\langle B(p_B)|\mathcal{O}_{\pi}|B(p_B)\rangle = 2M_B\mu_{\pi}^2, \qquad (17)$$

$$C_{\rm mag}(\mu)\langle B(p_B)|\mathcal{O}_G|B(p_B)\rangle = 2M_B\mu_G^2, \qquad (18)$$

$$-c_D(\mu)\langle B(p_B)|\mathcal{O}_D|B(p_B)\rangle = 4M_B\rho_D^3, \qquad (19)$$

$$-c_S(\mu)\langle B(p_B)|\mathcal{O}_{LS}|B(p_B)\rangle = 4M_B\rho_{LS}^3.$$
(20)