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Outline

1. At hadron colliders, there are many interesting final states to
observe. Among these, the production of colour-neutral final
states has gotten much attention.

2. There are many methods to compute cross sections at NLO and
NNLO. However, at N3LO the implementation of these methods
is involved.

3. I shall present our methods to compute beam function which
have already been computed at NLO [Becher, Neubert ‘11], NNLO
[Gehrmann, Liibbert, Yang ’12, ’14] and recently N3LO
[Luo, Wang, Xu, Yang, Yang, Zhu ‘19, Ebert, Mistlberger, Vita, ‘20]

4. The beam function was the last ingredient needed to implement
the g slicing method at N3LO.
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The gy slicing method

[Catani, Grazzini ‘07, ‘15]
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Factorization
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where F = H,Z, W,ZZ WW, tt, ...
If not colourless the final state must be at least massive
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All those functions

To get the cross section at N™LO, we need to know all those functions

at N™LO
AdoN™O e Lo Lo
—— =5 ® B; ®H ®S
do
B - beam function - radiation collinear to the beam,
process-independent, known up to N3LO

H - hard function - virtual corrections, process-dependent
S - soft function - soft, real radiation, process-dependent

Today, I will focus on B.
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Renormalization

[ T T T separately divergent
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Small-qr factorization in SCET

Gluons’ momenta in light-cone coordinates

k' = (k' k k)  where kT =k"+k*
Expansion parameter
2
A= ?Tg <1
Phase space regions
K
collinear k'~ (1,A50) Q% B
anti- k'~ (N2, 1,0) Q% B
collinear
hard k'~ (1,1,1) Q? H
K2 = N Q2
soft k'~ (A A0 Q2 S

k+
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Soft Collinear Effective Theory (SCET)

SCET ~ QCD‘IR 1
imit

Hard degrees of freedom are integrated out into Wilson coefficients,
which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft
components:

P(x) = Pe(x) + de(x) + ¢s(x)

The new fields decouple in the Lagrangian

»CSCET = »Cc + »CE + ['S

At leading power, the decoupled Lagrangians are copies of the QCD
lagrangian.

The separation of fields in the Lagrangian into collinear, anti-collinear
and soft sectors, facilitates proofs of factorization theorems.
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Rapidity divergences and analytic regulator

QCD O K
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collinear soft anti-collinear Collinear
kZ = )\2 QZ
k+

Modification of the measure [Becher, Bell ‘12]

/ddk5+(k2) = /ddk <k”+)a5+(k2)

The regulator is necessary at intermediate steps of the calculation.
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Rapidity divergences and analytic regulator

Rapidity divergences do not appear in QCD, hence, the complete
SCET result has to stay finite in the limit o — 0.

They appear in real emission diagrams due to the expansion in
different momentum regions (collinear, soft, ..).

siliQ..ik - (pil + pi2 + b + pik)2

If we look at a phase space region in which p;, and p;, are collinear
while all other momenta are anti-collinear, one expands

Sivio.in = (D5, + 0, )(PF, 4+ - + b ) + O(X?)

It can be shown that divergences arising from this expansion, can be
regulated by analytic regularization [Becher, Bell ‘11].
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NNLO and N3LO beam function
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The beam function
Represents corrections coming from emissions of real, collinear gluons,

whose transverse momenta sum up to a fixed value qr and whose
longitudinal component along p sums up to 1 — z

Bbare(qT y Z) X

n-n=2
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N3LO propagators

Possible denominators that may cause divergencies.

light-cone
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The way to go

The beam function
Bbare z QT ZIM

can be calculated if each integral is represented as

dx; dxg dxg dx4
E / 1+ale 1+a25 1+a3€ X1+a4€ dX5"'ngWj(Xl,Xg,...,Xg).
X3 4

j € sectors

Wi(x1,X2,...,Xg) has to be finite if x;,...,x4 — 0.
Then we can use

X_liai _ X1)+Z {Iog .(Xl)]+ '

i Xi

In order to fu2rther simplify the computation, we substitute the delta
§(ky) for e %1 and rescale the integral correspondingly.
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N3LO propagators

The first problem: It is impossible to parameterize the momenta such
that all scalar products look simple simultaneously.

Example
2 +12 12 12
HI[170’0,0,1] 1_1:[1,0,0,0,*1] Iy = ua(),(),oa = L
21, 21,
12 12 2. —12
I3 = [32;—3311, 0, I3Tsin x1, 137 cosx1, 3213”}
12 12 12 _12
= | 22025 Lypsin gy sin g, Lot cos o sin 61, oy cos gy, =2
215_ 215
n-lh=4L_ n-lo=l_ @-l3=13_
RTINS NP AR P .
1l = o1, 9L, 1TloT 1 1= P
Brls—  Bpla- L
Iy -13 = ==— — lol3T cos x1 cos @1 — larl3T COS P9 Sin Y71 Sin P1

2l | 215
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Step 1: selector functions

7 triple collinear 12 double collinear
(Ii-12) (n-11) (n-12) (-L)@-1) | (Lh-13)(n-12)
(I -15) (n-11) (n-1s) (-L)@-13) | (2-13)(n-L)
(I2-13) (n-12) (n - 13) (m-l)(@-1g) | (li-l2)(n-1s)
(Ii-12) (0 1p) (B-12) (@-L)(n-lp) | (lh-ls)(0-12)
(Ii-1s) (0~ 1) (0 -1s) @-L)(@-13) | (2-13)(0-L)
(I2-15) (0 - 1) (0 - 1s) @-L)@-15) | (L-1x)(0-15)
(11 12) (11 - 13) (12 - 13)

, dign = (li-L)(@- L) (@),

St22=7—=" 1 1

di,21D D= % i +i§1 G
1

(- )(n-1y) . (L)@ L)
(I1-13) (0 13) (13 - 13)
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Step 2: nonlinear transformations

Let’s focus on the sector (13 -1p)(@-11) (- 1z) . All other singularities
are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following

propagators:
n- 11 — 11_
n- 12 — 12_
n- 11
n- 12
| 2 P P P
I -1 s 2L — Iyl
112 — ol 4 ol 1TloT Cos ¢1
n- 11 +n- 12
n-li4+n-ly — L +1s

Li-lo+1-13+12-13
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Step 2: nonlinear transformations

The nonlinear transformation

= 1 (Lirlp- —1i-lor)* (1 + cos ¢1)
2 I%TIE, + l%ilgT — 211—12—11T12T COos d)l
turns
J 0 PR A
I -1 = 12T11i + 22T1217 — litlaT cos ¢y
into
. (3~ B Br)’

25 Iy (Bp2 + 12 12— 21 1 Liplyr(1 — 20))
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NNLO beam function

Known analytically [Gehrmann, Liibbert, Yang 12, *14].

We checked that our method reproduces that result

Bqiq(2, 0)
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Furthermore, we are able to get higher orders in the expansion
parameters at the cost of more computing time
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