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B̄ → Xsγ

B̄ → Xsγ is one of the most suitable processes for the search for new physics in
the quark flavor sector

b → sγ forbidden at tree-level, dom-
inant contributions loop induced by
weak decays
→ small Standard Model rate
→ sensitive to new particles running
in the loop

b
Z

s

u, c, t

u u

⇒ Use framework of the effective weak theory to calculate the CP- and
isospin-averaged branching ratio of B̄ → Xsγ (with Eγ > 1.6 GeV) for this
process. Current predictions, including calculations up to NNLO:

BSM
sγ = (3.36± 0.23) · 10−4

[Misiak et al., arXiv:1503.01789]

Bexp
sγ = (3.32± 0.15) · 10−4

[HFLAV, arXiv:1612.07233]
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Four-body contributions to B̄ → Xs + γ

b b
Pi Pj

[Kamiński et al., arXiv:1209.0965]

b b
Pi Pj

[Huber et al., arXiv:1411.7677]

b b
Pi Pj

this talk

diagrams as above only contain
4-particle cuts

uncalculated until now:
subleading contributions on the
left, where additional 5-particle
cuts have to be taken into
account

formally completing NLO QCD
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Effective Operators

The relevant processes in our case are described by a subset of
dimension-6 operators from the effective weak theory:

Leff = LQED+QCD +
4GF√

2
V ∗tsVtb

[ 2∑
i=1

Cu
i P

u
i +

6∑
i=3

CiPi

]

Pu
1 = (s̄LγµT

auL)(ūLγ
µT abL) Pu

2 = (s̄LγµuL)(ūLγ
µbL)

P3 = (s̄LγµbL)
∑

q

(q̄γµq) P4 = (s̄LγµT
abL)

∑
q

(q̄γµT aq)

P5 = (s̄LγµγνγρbL)
∑

q

(q̄γµγνγρq) P6 = (s̄LγµγνγρT
abL)

∑
q

(q̄γµγνγρT aq)

For this calculation, the sum over the quarks includes up-, down- and
strange-quark (bottom is kinematically forbidden and final states including
charm are excluded from B → Xsγ per definition)
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Example Processes: Real & virtual contributions

11968 virtual & 14400 real contributions (including all six operators)
→ reduced by a factor of four through color identities

b b

s

u

u

P3 P3

b b

s

u

u

P3 P3

⇒ Virtual: 4-particle-cuts with up to three massive propagators
(up to two of them contained in the loop)

⇒ Real: 5-particle-cuts of with up to four massive propagators
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Steps and status of the calculation

this talk:

a) Evaluation and processing of the cut-diagrams

b) Integration over the four- and five-particle (massless) phase space

future steps:

c) Renormalization of UV divergences

d) Treatment of IR divergences
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a) Evaluation and processing of the diagrams

Program Setup:

i) Generation of the Diagrams: QGRAF
[P. Nogueira, J. Comput. Phys. 105 (1993)]

ii) Algebraic simplification of trace structures and kinematics: FORM
[B. Ruijl et al., arXiv:1707.06453]

iii) Integration-By-Parts Reduction: FIRE6
[A. V. Smirnov, F. S. Chukharev, arXiv:1901.07808]

⇒ |M(sij )|2
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Aside: Subtleties in the evaluation of the traces

If the operators Pu
1/2 ∼ (s̄LγµuL)(ūLγ

µbL) are used, the evaluation of the
diagrams leads to expressions with either four γ5 in one trace or products
of two traces with up to two γ5 each.
⇒ Not straightforward to treat these in d dimensions

Our Method: Use the relation

Pu
1 = − 4

27
Pu

3 +
1

9
Pu

4 +
1

27
Pu

5 −
1

36
Pu

6 +O(ε)

But: This leads to extra evanescent operators that have to be considered

in the end, when renormalizing.
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b) Phase space

Need to integrate the Kernels K(sij ) (= |M(sij )|2) from a) over the four-
and five-particle massless phase space in d = 4− 2ε dimensions

For the four-particle-cuts this looks the following:∫
[dsij ] δ(1−

∑
sij )K(sij )(−∆4)

d−5
2 Θ(−∆4)

⇒ Express cut on energy as Eγ >
mb
2 (1− δ), translating

(in the restframe of the bottom-quark) to

s14 + s24 + s34 > 1− δ.

This condition can then be incorporated into the integral:∫ δ

0
dz

∫ 1

0
[dsij ]δ(1− z − s14 − s24 − s34)δ(z − s12 − s23 − s13) ×

× K(sij )(−∆4)
d−5

2 Θ(−∆4)
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IBP Reduction

One subtlety: IBP relations do not know about the cut on the photon
energy
→ have to put it in by hand, using reversed unitarity:

δ(p2)→ 1

p2 + iε
− 1

p2 − iε

for the delta-function δ(z − s12 − s13 − s23) introduced by the cut.
[Anastasiou, Melnikov, arXiv:hep-ph/0207004]

This relation is also used for the final state particles with p2
i = 0, leading

to four-loop topologies that are getting reduced:

p3

p1

p2

p4

k
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Master integrals

Occuring topologies can be classified and reduced together in three
families. These families are determined by the number of massive
propagators in the loop being either zero, one or two.
⇒ resulting in 1/16/16 (non-vanishing) master integrals.

If during reduction, the power of one of the 5 propagators from the
reversed unitarity becomes non-positive, throw away that contribution:

1

(p2)0
= 1 =

p2

p2
→ p2δ(p2) = 0

p3

p1

p2

p4

k

→

p3

p1

p2

k

→ 0
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Evaluation of the master integrals

A lot of the master integrals (typically those with the least amount of
propagators) can be written down in closed form

For some MIs, the last phase space integration can not be carried out
straightforwardly:∫ 1

0
dw z−2ε(1− z)1−2ε

3F2(a1, a2, a3, a4, a5, 1− wz)

⇒ expansion in ε and order-by-order integration over w

Differential equations approach is also very helpful:
Write master integrals as

∂z
~f (z , ε) =

[∑
k

ak (ε)

z − zk

]
~f (z , ε)

→ to solve the equations, only need solution in one point (e.g. z=0)
for the boundary conditions, where the integrals are solvable in closed
form
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Summary

Status of the calculation:

creation and reduction of the expression is done

subtleties, such as the treatment of γ5 and the implementation of the
cut are under control

master integrals under evaluation

Outlook:

finish solving the master integrals

treatment of the UV and IR divergences, including the evanescent
contributions

investigate phenomenological aspects of the result

Thanks for your attention!
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Backup
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State of the art

NLO QCD completed in 2002

[Buras et al., hep-ph/0203135]

Estimate of corrections O(α2
s )

[Misiak et al., hep-ph/0609232]

Multi-parton contributions

Completion of BLM
corrections
[Misiak, Poradsziński, arXiv:1009.5685]

Tree level contributions
[Kamiński et al., arXiv:1209.0965]

Most NLO four-body
corrections
B → sγ + qq̄
[Huber et al., arXiv:1411.7677]

b b
Pi Pj
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[Misiak, Poradsziński, arXiv:1009.5685]

Tree level contributions
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Sample Kernel

I =

∫
dPS4

∫
d4`

(4π)d

s13s24

`2(`+ k1 + k2 + k3)2s34
(−∆4)

d−5
2

⇒
∫

dPS4
Γ(ε)Γ(1− ε)2

Γ(2− 2ε)

s13s24(s23 + s34 + s24)−ε

s34
(−∆4)

d−5
2

use cyclicity in momenta of the light quarks (3 → 2 → 1) and change of
variables:

s13 = z − s23 − s12 s24 = z̄ − s14 − s34

s12 = vwz s34 = z̄ v̄

s14 = z̄vx s23 = (a+ − a−)u + a−

⇒
δ∫

0

dz(zz̄)d−3

1∫
0

du dv dx dw (uū)
d−5

2 vd−3(v̄ww̄xx̄)
d−4

2 ×

[
(a+ − a−)u + a−

]
xx̄−1

[
v(wz + z̄)

]−ε
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Sample Kernel

Evaluation of the integral leads to a sum of Hypergeometric functions:

c1 z̄1−2εz2−2ε
2F1(2− ε, ε; 3− 2ε; z) + c2 z̄1−2εz2−2ε

2F1(1− ε, ε; 2− 2ε; z)

where the ci are functions of ε and we are still differential in the photon
energy.

Best case: fully analytic expression to all orders in ε, e.g. in terms of
Hypergeometric and β-functions (the evaluation of the integral over z
and the series in ε are interchangeable, if the former does not
introduce new poles)

Second best case: obtain result in terms of e.g. Mellin-Barnes
representation, which can then be expanded as a series in ε
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5-particle phase space

s1345/q
2 = t7 s34/q

2 = t2t6t7t̄4

s134/q
2 = t6t7 s15/q

2 = t7t̄6[1− t9(1− t2t2)]− y10

s13/q
2 = t6t7t̄2 s25/q

2 = y−8 + (y+
8 − y−8 )t8

s23/q
2 = t3t̄7(1− t2t4)(t6t̄9 + t9) s35/q

2 = t7t9t̄6(1− t2t4)

s14/q
2 = t2t4t6t7 s45/q

2 = y−10 + (y+
10 − y−10)t10

s24/q
2 = y−5 + (y+

5 − y−5 )t5)

∫
dΦD

1→5 = K(5)
Γ (q2)2D−5

1∫
0

10∏
j=2

dtj [t5t̄5]−1−ε[t8t̄8t10t̄10]−
1
2
−ε

×[t2t6t̄6t̄7]1−2ε[(t̄2t3t̄3t4t̄4t9t̄9)]−εt2−3ε
7
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Renormalization

To cancel UV divergences, insertions of the bare operators P
(0)
i into the

tree-level diagrams have to be computed

b b

s

u

u

P3 P3

b b

s

s

s
P3 P3

With this, the renormalization constants δZij can be used to cancel the
UV-divergences via the relation∑

i=1..6

CiP
(0)
i =

∑
i=1..6

CiPi +
αs

4πε

∑
i ,j=1..6

CiδZijPj
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IR regularization

regions where photon is collinear to light quarks gives rise to collinear
divergences
→ automatically regularized in DimReg

divergences are artifact of massless limit
→ could more naturally be regulated by light quark masses, but
massless case is already quite complicated

fortunately, amplitudes in the quasi-collinear limit factorize:

b → q1q2q̄3γ ⇒ b →
∑

i

q1q2q̄3 × fi

with fi a DGLAP splitting function describing emission of γ from qi
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Comparing the splitting functions in the two different schemes of mass
regulators and DimReg leads to the relation

dΓm

dz
=

dΓε
dz

+
dΓshift

dz
Shifting part can be calculated from three-particle-cut diagrams:

Γshift

dz
=

1

2mb

1

2Nc

∫
dPS3K3(sij )

αe

2πz̄

{
Q2

1

[
1 +

(z − s23)2

(1− s23)2

]}
×

×

[
1

ε
− 1 + 2 log

(1− s23)µ

mq1(1− z)
Θ(z − s23) + (cyclic)

]
⇒ trade the surviving 1/ε terms for log(

mq

mb
) terms

b b

s

u

u

P3 P3

b b

s

u

u

P3 P3
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