Towards completion of the four-body contributions to $\bar{B} \to X_{\rm s} \gamma$ at NLO

Lars-Thorben Moos

with Tobias Huber

CRC Young Scientist Forum 2020

23.06.2020

$$\bar{B} \to X_s \gamma$$

 $\bar{B} \rightarrow X_s \gamma$ is one of the most suitable processes for the search for new physics in the quark flavor sector

 $b \rightarrow s\gamma$ forbidden at tree-level, dominant contributions loop induced by weak decays \rightarrow small Standard Model rate \rightarrow sensitive to new particles running in the loop

 \Rightarrow Use framework of the effective weak theory to calculate the CP- and isospin-averaged branching ratio of $\bar{B} \rightarrow X_s \gamma$ (with $E_{\gamma} > 1.6$ GeV) for this process. Current predictions, including calculations up to NNLO:

$$\mathcal{B}_{s\gamma}^{SM} = (3.36 \pm 0.23) \cdot 10^{-4}$$

[Misiak et al., arXiv:1503.01789]

$$\mathcal{B}_{s\gamma}^{exp} = (3.32 \pm 0.15) \cdot 10^{-4}$$

[HFLAV, arXiv:1612.07233] 2 / 13

Four-body contributions to $\bar{B} \rightarrow X_s + \gamma$

[Kamiński et al., arXiv:1209.0965]

- diagrams as above only contain 4-particle cuts
- uncalculated until now: subleading contributions on the left, where additional 5-particle cuts have to be taken into account
- formally completing NLO QCD

Effective Operators

The relevant processes in our case are described by a subset of dimension-6 operators from the effective weak theory:

$$\mathcal{L}_{eff} = \mathcal{L}_{QED+QCD} + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \Big[\sum_{i=1}^2 C_i^u P_i^u + \sum_{i=3}^6 C_i P_i \Big]$$

$$\begin{aligned} P_1^{u} &= (\bar{s}_L \gamma_\mu T^a u_L) (\bar{u}_L \gamma^\mu T^a b_L) & P_2^{u} &= (\bar{s}_L \gamma_\mu u_L) (\bar{u}_L \gamma^\mu b_L) \\ P_3 &= (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q} \gamma^\mu q) & P_4 &= (\bar{s}_L \gamma_\mu T^a b_L) \sum_q (\bar{q} \gamma^\mu T^a q) \\ P_5 &= (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_q (\bar{q} \gamma^\mu \gamma^\nu \gamma^\rho q) & P_6 &= (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho T^a b_L) \sum_q (\bar{q} \gamma^\mu \gamma^\nu \gamma^\rho T^a q) \end{aligned}$$

For this calculation, the sum over the quarks includes up-, down- and strange-quark (bottom is kinematically forbidden and final states including charm are excluded from $B \rightarrow X_s \gamma$ per definition)

Example Processes: Real & virtual contributions

11968 virtual & 14400 real contributions (including all six operators) \rightarrow reduced by a factor of four through color identities

 ⇒ Virtual: 4-particle-cuts with up to three massive propagators (up to two of them contained in the loop)
 ⇒ Real: 5-particle-cuts of with up to four massive propagators

Steps and status of the calculation

this talk:

- a) Evaluation and processing of the cut-diagrams
- b) Integration over the four- and five-particle (massless) phase space

future steps:

- c) Renormalization of UV divergences
- d) Treatment of IR divergences

a) Evaluation and processing of the diagrams

Program Setup:

i) Generation of the Diagrams: QGRAF

[P. Nogueira, J. Comput. Phys. 105 (1993)]

ii) Algebraic simplification of trace structures and kinematics: FORM [B. Ruijl et al., arXiv:1707.06453]

iii) Integration-By-Parts Reduction: FIRE6 [A. V. Smirnov, F. S. Chukharev, arXiv:1901.07808]

 $\Rightarrow |\mathcal{M}(s_{ij})|^2$

Aside: Subtleties in the evaluation of the traces

If the operators $P_{1/2}^u \sim (\bar{s}_L \gamma_\mu u_L)(\bar{u}_L \gamma^\mu b_L)$ are used, the evaluation of the diagrams leads to expressions with either four γ_5 in one trace or products of two traces with up to two γ_5 each.

 \Rightarrow Not straightforward to treat these in d dimensions

Our Method: Use the relation

$$P_1^{u} = -\frac{4}{27}P_3^{u} + \frac{1}{9}P_4^{u} + \frac{1}{27}P_5^{u} - \frac{1}{36}P_6^{u} + \mathcal{O}(\epsilon)$$

But: This leads to extra evanescent operators that have to be considered

in the end, when renormalizing.

b) Phase space

Need to integrate the Kernels $\mathcal{K}(s_{ij})$ (= $|\mathcal{M}(s_{ij})|^2$) from a) over the fourand five-particle massless phase space in $d = 4 - 2\epsilon$ dimensions

For the four-particle-cuts this looks the following:

$$\int [ds_{ij}] \,\delta(1-\sum s_{ij}) \mathcal{K}(s_{ij})(-\Delta_4)^{\frac{d-5}{2}} \Theta(-\Delta_4)$$

⇒ Express cut on energy as $E_{\gamma} > \frac{m_b}{2}(1-\delta)$, translating (in the restframe of the bottom-quark) to

$$s_{14} + s_{24} + s_{34} > 1 - \delta.$$

This condition can then be incorporated into the integral:

$$\int_0^{\delta} dz \int_0^1 [ds_{ij}] \delta(1 - z - s_{14} - s_{24} - s_{34}) \delta(z - s_{12} - s_{23} - s_{13}) \times \\ \times \frac{\mathcal{K}(s_{ij})(-\Delta_4)^{\frac{d-5}{2}} \Theta(-\Delta_4)}{\varepsilon}$$

IBP Reduction

One subtlety: IBP relations do not know about the cut on the photon energy

 \rightarrow have to put it in by hand, using reversed unitarity:

$$\delta(p^2)
ightarrow rac{1}{p^2 + iarepsilon} - rac{1}{p^2 - iarepsilon}$$

for the delta-function $\delta(z - s_{12} - s_{13} - s_{23})$ introduced by the cut.

[Anastasiou, Melnikov, arXiv:hep-ph/0207004]

This relation is also used for the final state particles with $p_i^2 = 0$, leading to four-loop topologies that are getting reduced:

Master integrals

Occuring topologies can be classified and reduced together in three families. These families are determined by the number of massive propagators in the loop being either *zero*, *one* or *two*. \Rightarrow resulting in 1/16/16 (non-vanishing) master integrals.

If during reduction, the power of one of the 5 propagators from the reversed unitarity becomes non-positive, throw away that contribution:

$$rac{1}{(p^2)^0} = 1 = rac{p^2}{p^2} o p^2 \delta(p^2) = 0$$

Evaluation of the master integrals

- A lot of the master integrals (typically those with the least amount of propagators) can be written down in closed form
- For some MIs, the last phase space integration can not be carried out straightforwardly:

$$\int_0^1 dw \ z^{-2\epsilon} (1-z)^{1-2\epsilon} \ _3F_2(a1, a2, a3, a4, a5, 1-wz)$$

 \Rightarrow expansion in ϵ and order-by-order integration over w

 Differential equations approach is also very helpful: Write master integrals as

$$\partial_z \vec{f}(z,\epsilon) = \left[\sum_k \frac{a_k(\epsilon)}{z-z_k}\right] \vec{f}(z,\epsilon)$$

 \rightarrow to solve the equations, only need solution in one point (e.g. z=0) for the boundary conditions, where the integrals are solvable in closed form

Summary

Status of the calculation:

- creation and reduction of the expression is done
- $\bullet\,$ subtleties, such as the treatment of γ_5 and the implementation of the cut are under control
- master integrals under evaluation

Outlook:

- finish solving the master integrals
- treatment of the UV and IR divergences, including the evanescent contributions
- investigate phenomenological aspects of the result

Summary

Status of the calculation:

- creation and reduction of the expression is done
- $\bullet\,$ subtleties, such as the treatment of γ_5 and the implementation of the cut are under control
- master integrals under evaluation

Outlook:

- finish solving the master integrals
- treatment of the UV and IR divergences, including the evanescent contributions
- investigate phenomenological aspects of the result

Thanks for your attention!

Backup

State of the art

• NLO QCD completed in 2002

[Buras et al., hep-ph/0203135]

• Estimate of corrections $\mathcal{O}(\alpha_s^2)$

[Misiak et al., hep-ph/0609232]

- Multi-parton contributions
 - Completion of BLM corrections

[Misiak, Poradsziński, arXiv:1009.5685]

- Tree level contributions [Kamiński et al., arXiv:1209.0965]
- Most NLO four-body corrections $B
 ightarrow s \gamma + q ar q$

[Huber et al., arXiv:1411.7677]

State of the art

• NLO QCD completed in 2002

[Buras et al., hep-ph/0203135]

• Estimate of corrections $\mathcal{O}(\alpha_s^2)$

[Misiak et al., hep-ph/0609232]

- Multi-parton contributions
 - Completion of BLM corrections

[Misiak, Poradsziński, arXiv:1009.5685]

- Tree level contributions [Kamiński et al., arXiv:1209.0965]
- Most NLO four-body corrections $B
 ightarrow s \gamma + q ar q$

[Huber et al., arXiv:1411.7677]

State of the art

• NLO QCD completed in 2002

[Buras et al., hep-ph/0203135]

• Estimate of corrections $\mathcal{O}(\alpha_s^2)$

[Misiak et al., hep-ph/0609232]

- Multi-parton contributions
 - Completion of BLM corrections

[Misiak, Poradsziński, arXiv:1009.5685]

- Tree level contributions [Kamiński et al., arXiv:1209.0965]
- Most NLO four-body corrections $B
 ightarrow s \gamma + q ar q$

[Huber et al., arXiv:1411.7677]

Sample Kernel

$$\begin{split} \mathcal{I} &= \int dPS_4 \int \frac{d^4\ell}{(4\pi)^d} \frac{s_{13}s_{24}}{\ell^2(\ell+k_1+k_2+k_3)^2 s_{34}} (-\Delta_4)^{\frac{d-5}{2}} \\ &\Rightarrow \int dPS_4 \frac{\Gamma(\epsilon)\Gamma(1-\epsilon)^2}{\Gamma(2-2\epsilon)} \frac{s_{13}s_{24}(s_{23}+s_{34}+s_{24})^{-\epsilon}}{s_{34}} (-\Delta_4)^{\frac{d-5}{2}} \end{split}$$

use cyclicity in momenta of the light quarks $(3 \rightarrow 2 \rightarrow 1)$ and change of variables:

$$s_{13} = z - s_{23} - s_{12} \qquad s_{24} = z - s_{14} - s_{34}$$

$$s_{12} = vwz \qquad s_{34} = \bar{z}\bar{v}$$

$$s_{14} = \bar{z}vx \qquad s_{23} = (a^{+} - a^{-})u + a^{-}$$

$$\Rightarrow \int_{0}^{\delta} dz (z\bar{z})^{d-3} \int_{0}^{1} du \ dv \ dx \ dw \ (u\bar{u})^{\frac{d-5}{2}} v^{d-3} (\bar{v}w\bar{w}x\bar{x})^{\frac{d-4}{2}} \times [(a^{+} - a^{-})u + a^{-}]x\bar{x}^{-1} [v(wz + \bar{z})]^{-\epsilon}$$

Sample Kernel

Evaluation of the integral leads to a sum of Hypergeometric functions:

$$c_1 \ \bar{z}^{1-2\epsilon} z^{2-2\epsilon} \ _2F_1(2-\epsilon,\epsilon;3-2\epsilon;z) + c_2 \ \bar{z}^{1-2\epsilon} z^{2-2\epsilon} \ _2F_1(1-\epsilon,\epsilon;2-2\epsilon;z)$$

where the c_i are functions of ϵ and we are still differential in the photon energy.

 Best case: fully analytic expression to all orders in ε, e.g. in terms of Hypergeometric and β-functions (the evaluation of the integral over z and the series in ε are interchangeable, if the former does not introduce new poles)

Sample Kernel

Evaluation of the integral leads to a sum of Hypergeometric functions:

$$c_1 \ \bar{z}^{1-2\epsilon} z^{2-2\epsilon} \ _2F_1(2-\epsilon,\epsilon;3-2\epsilon;z) + c_2 \ \bar{z}^{1-2\epsilon} z^{2-2\epsilon} \ _2F_1(1-\epsilon,\epsilon;2-2\epsilon;z)$$

where the c_i are functions of ϵ and we are still differential in the photon energy.

- Best case: fully analytic expression to all orders in ϵ , e.g. in terms of Hypergeometric and β -functions (the evaluation of the integral over z and the series in ϵ are interchangeable, if the former does not introduce new poles)
- Second best case: obtain result in terms of e.g. Mellin-Barnes representation, which can then be expanded as a series in ϵ

5-particle phase space

$$\begin{split} s_{1345}/q^2 &= t_7 & s_{34}/q^2 = t_2 t_6 t_7 \bar{t}_4 \\ s_{134}/q^2 &= t_6 t_7 & s_{15}/q^2 = t_7 \bar{t}_6 [1 - t_9 (1 - t_2 t_2)] - y_{10} \\ s_{13}/q^2 &= t_6 t_7 \bar{t}_2 & s_{25}/q^2 = y_8^- + (y_8^+ - y_8^-) t_8 \\ s_{23}/q^2 &= t_3 \bar{t}_7 (1 - t_2 t_4) (t_6 \bar{t}_9 + t_9) & s_{35}/q^2 = t_7 t_9 \bar{t}_6 (1 - t_2 t_4) \\ s_{14}/q^2 &= t_2 t_4 t_6 t_7 & s_{45}/q^2 = y_{10}^- + (y_{10}^+ - y_{10}^-) t_{10} \\ s_{24}/q^2 &= y_5^- + (y_5^+ - y_5^-) t_5) \end{split}$$

$$\int d\Phi_{1\to5}^D = \mathcal{K}_{\Gamma}^{(5)}(q^2)^{2D-5} \int_0^1 \prod_{j=2}^{10} dt_j [t_5 \bar{t}_5]^{-1-\epsilon} [t_8 \bar{t}_8 t_{10} \bar{t}10]^{-\frac{1}{2}-\epsilon} \\ \times [t_2 t_6 \bar{t}_6 \bar{t}_7]^{1-2\epsilon} [(\bar{t}_2 t_3 \bar{t}_3 t_4 \bar{t}_4 t_9 \bar{t}_9)]^{-\epsilon} t_7^{2-3\epsilon}$$

Renormalization

To cancel UV divergences, insertions of the bare operators $P_i^{(0)}$ into the tree-level diagrams have to be computed

With this, the renormalization constants δZ_{ij} can be used to cancel the UV-divergences via the relation

$$\sum_{i=1..6} C_i P_i^{(0)} = \sum_{i=1..6} C_i P_i + \frac{\alpha_s}{4\pi\epsilon} \sum_{i,j=1..6} C_i \delta Z_{ij} P_j$$

IR regularization

- regions where photon is collinear to light quarks gives rise to collinear divergences
 - \rightarrow automatically regularized in <code>DimReg</code>
- divergences are artifact of massless limit

 → could more naturally be regulated by light quark masses, but
 massless case is already quite complicated
- fortunately, amplitudes in the quasi-collinear limit factorize:

$$b
ightarrow q_1 q_2 ar q_3 \gamma \Rightarrow b
ightarrow \sum_i q_1 q_2 ar q_3 imes f_i$$

with f_i a DGLAP splitting function describing emission of γ from q_i

Comparing the splitting functions in the two different schemes of mass regulators and DimReg leads to the relation

$$\frac{d\Gamma_m}{dz} = \frac{d\Gamma_\epsilon}{dz} + \frac{d\Gamma_{shift}}{dz}$$

Shifting part can be calculated from three-particle-cut diagrams:

$$\begin{split} \frac{\Gamma_{shift}}{dz} &= \frac{1}{2m_b} \frac{1}{2N_c} \int dP S_3 \mathcal{K}_3(s_{ij}) \frac{\alpha_e}{2\pi \bar{z}} \left\{ Q_1^2 \left[1 + \frac{(z - s_{23})^2}{(1 - s_{23})^2} \right] \right\} \times \\ & \times \left[\frac{1}{\epsilon} - 1 + 2\log \frac{(1 - s_{23})\mu}{m_{q_1}(1 - z)} \Theta(z - s_{23}) + (\text{cyclic}) \right] \end{split}$$

 \Rightarrow trade the surviving $1/\epsilon$ terms for log $(\frac{m_q}{m_b})$ terms

