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Motivation

I Interest in the Higgs-gluon form factor due to studies on cross
section predictions for hadron-collider processes involving an
intermediate Higgs boson

I Amplitude gg → H contributes to single- and double-Higgs
production
⇒ Applications require knowledge of the Higgs-gluon form factor

I In this talk: Calculation of the three-loop Higgs-gluon form factor in
QCD with a single massive quark
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Recent development

I Top quark mass dependence of the Higgs-gluon form factor
[Davies,Gröber,Maier,Rauh,Steinhauser (2019)]

I Analytic results for the light-fermion contributions to the
Higgs-gluon form factor [Harlander,Prausa,Usovitsch (2019)]

I Exact quark-mass dependence of the Higgs-gluon form factor
[Czakon,MN (2020)]
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Setup

 

generate
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DiaGen [Czakon (unpublished)]

FORM [Vermaseren (2000)]
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form factor

reduce to
 master integrals

 
DiaGen [Czakon (unpublished)]

generated
FORM-Code

IdSolver [Czakon (unpublished)]
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From Feynman diagrams to scalar integrals

I Get rid of gluon wave functions and tensor structure
I Most general tensor structure of the amplitude:

Mµν = (pµ1 p
ν
1 + pµ2 p

ν
2 )A+ pµ1 p

ν
2B + pµ2 p

ν
1C + (p1 · p2)g

µνD

(p1,2: momenta of the external gluons)
I Colour structure is trivial
I Physical quantities depend on coefficient C only
I C is projected out by

C =
1

(p1 · p2)(d − 2)

[
gµν −

p2µp1ν

(p1 · p2)

]
Mµν
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From Feynman diagrams to scalar integrals

I Traces of γ-matrices in the amplitude are calculated
I Colour factors are computed with the FORM-package color [van

Ritbergen,Schellekens,Vermaseren (1999)]
I For every Feynman diagram an automatically generated

FORM-procedure is called depending on the topology
I Purpose of this code:

I Matching scalar integrals in the projected form factor to prototypes
of the form

PRID(n1, · · · , n12) =

∫
ddk1

iπd/2

∫
ddk2

iπd/2

∫
ddk3

iπd/2
1

Dn1
1 · · ·Dn12

12
,

I For gg → H: 505 diagrams ⇒ 10209 scalar integrals
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Reduction to master integrals

I Integration-by-parts (IBP) identities [Chetyrkin,Tkachov (1981)] :

0 =

∫
ddk1

iπd/2 · · ·
∫

ddkL
iπd/2

∂

∂kµi

pµj
Dn1

1 · · ·D
nN
N

,

where the pj are loop momenta or external momenta.
I Automatic approach to solve IBP relations: Laporta’s algorithm

[Laporta (2000)]
I For gg → H: 426 master integrals
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Two-scale approximation

I The complexity of multi-loop calculations grows rapidly with the
increasing number of scales

I At three-loop level different quark flavours could run in separated
loops

I Introduce one heavy quark with mass M and a light quark with mass
zero
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Method of differential equations
I Introduce dimensionless variable z ≡ s

4M2 + i0+

I Exploit IBP relations again to construct a system of first-order linear
differential equations

dMi (z , ε)

dz
≡
∑
j

Aij(z , ε)Mj(z , ε) ,

where the coefficients Aij(z , ε) are rational functions in z and ε.
I Insert truncated ε-expansions for the master integrals

Mi (z , ε) ≡
ni−ni∑
l=0

εni+l Ik i+l(z)

I The functions Ik satisfy the following system of first-order linear
differential equations

dIk(z)
dz

≡
∑
l

Bkl(z) Il(z)
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Method of differential equations

I Instead of seeking an analytic solution, we solve the system
numerically.

I To provide proper boundaries for the numerical evolution, we solve
the differential equations in the limit z = 0 via a power-log ansatz

Ik
(
z
)
≡
∞∑
l=lk

mk∑
m=mk

cklm z l lnm z .

The underlying algorithm to determine cklm has been implemented in
a private C++ software that was originally developed for
[Czakon,Fiedler,Huber,Misiak,Schutzmeier,Steinhauser (2015)] .
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Numerical solution

Im(s/M2)

Re(s/M2)4 8 161 2

4/3 3/2 8/3

16/3

1

I Spurious and physical poles in the differential equations
I Numerical instabilities in their close vicinity
⇒ Avoid instabilities by integrating along contours in the complex
plane

I Utilise the algorithm by Bulirsch and Stoer implemented in the
Boost library odeint [Ahnert,Mulanski (2012)] to collect numerical
values for the master integrals over the whole kinematic range
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Results

I The form factor C is expanded in the strong coupling constant, αs ,
and the number of massless quark flavors, nl :

C = C(0) + αs

π
C(1) +

(αs

π

)2
C(2) +O

(
α3
s

)
, C(n) =

n∑
k=0

C(n,k) nkl .

I M is defined in the on-shell scheme, the strong coupling in MS
scheme with massive-quark decoupling.

I Infrared divergencies may be removed according to [Catani (1998)]
yielding the finite remainder CI .
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Results
I Compare the exact form factor to Padé approximation estimated by

[Davies,Gröber,Maier,Rauh,Steinhauser (2019)]

-10

0

10

20


ℐ(2
)

Re Exact

Im Exact

LMEs

Re Padè

Im Padè

(100)
(4)

(2)

(100)
(4)

(2)

0 0.5 1 2 5 20 ∞

-2

-1

0

1

2

z



14/14

Introduction Setup Computation of master integrals Results Summary

Summary

I The Higgs-gluon form factor is known exactly at three loops in QCD
with a single massive quark.

I We provide expansions of the form factor in the kinematic limits to
high orders.

I We have confirmed that an approach via Padé approximants is
sufficient in the case, where the massive quark is the top.

I Our results remove any uncertainties on the value of the form factor
obtained via Padé approximants.
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