
Functional interpolation techniques

Jonas Klappert

23.06.2020, Young Scientist Forum

Collaborators FireFly project: S.Y. Klein, F. Lange
Collaborators Kira project: F. Lange, P. Maierhöfer, J. Usovitsch



Problems in state-of-the-art calculations

Problem: Complexity becomes bottleneck for CAS-like approaches

For example: multi-scale problems

p1
l1
←−

l2 ↓
p3

p4

p2 p5

Usually sparse, but

#nonzero terms ∝ (D + n

n
)

D = 100 for n = 4→ 4.6 ⋅ 106

D = 100 for n = 5→ 9.7 ⋅ 107

Runtime and memory consumption can become critical

1 / 11



Black-box interpolation problem

y⃗ Ð→ Ð→ f (y⃗)

f (x⃗) = ?

2 / 11



Black-box interpolation problem

y⃗ Ð→ Ð→ f (y⃗)

f (x⃗) = n0 + n1x1 + . . .

d0 + d1x1 + . . .

FireFly
[JK, Lange 2019; JK, Klein, Lange 2020]

2 / 11



Interpolation

−5 0 5

x

10

11

12

13

14

15

16

17

18

f
(x

)

f (x) = 14

3 / 11



Interpolation

−5 0 5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

f
(x

)
/

1
0

3

f (x) = 14 − 208 x

3 / 11



Interpolation

−5 0 5

x

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

f
(x

)
/

1
0

4

f (x) = 14 − 304 x + 48 x2

3 / 11



Interpolation

−5 0 5

x

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

f
(x

)
/

10
5

f (x) = 14 − 58 x + 48 x2 − 62.5 x3

3 / 11



Interpolation

−5 0 5

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)
/

1
0

5

f (x) = 14 + 86 x − 97.5 x3 + 12x4

3 / 11



Interpolation

−5 0 5

x

−0.2

0.0

0.2

0.5

0.8

1.0

1.2

f
(x

)
/

1
0

5

f (x) = 14 + 32 x − 78 x3 + 12x4 − 1.5 x5

3 / 11



Interpolation

−5 0 5

x

−0.2

0.0

0.2

0.5

0.8

1.0

1.2

f
(x

)
/

1
0

5

f (x) = 14 + 32 x − 78 x3 + 12x4 − 1.5 x5

3 / 11



Finite fields

Definition: A field with a finite number of elements

All basic arithmetic operations are defined

We use a prime field Zp, i.e. integers modulo a prime p

Example Z7:

(3 + 5) mod 7 = 1

(3 − 6) mod 7 = 4

(4 ⋅ 3) mod 7 = 5

There is a unique multiplicative inverse for every element in Zp

In Z7 the inverse of 2 is 4:

2 ⋅ 2−1 = 1 = 2 ⋅ 4 mod 7

Arithmetic is exact and fast (machine-size integer)

4 / 11



Multivariate interpolation over Zp

Studied over the last decades in theoretical Computer Science

Polynomial interpolation [Zippel 1979; Ben-Or,Tiwari 1988; Kaltofen,

Lakshman 1988; Kaltofen, Lakshman, Wiley 1990; Kaltofen, Trager 1990; Diaz,

Kaltofen 1998; Kaltofen, Lee, Lobo 2000; Kaltofen, Lee 2003; Kaltofen, Yang

2007; Javadi, Monagan 2010]

Chance of failure (probabilistic) [Zippel 1979; Schwartz 1980; Zippel 1990]

nD2T 2

p
, T ≤ (D + n

n
)

Rational function interpolation [Grigoriev, Karpinski, Singer 1990; Kaltofen,

Trager 1990; Grigoriev, Karpinski 1991; Grigoriev, Karpinski, Singer 1994;

Monagan 2004; de Kleine, Monagan, Wittkopf 2005; Kaltofen, Yang 2007; Cuyt,

Lee 2011; Huang, Gao 2017; JK, Lange 2019; Peraro 2019; JK, Klein, Lange

2020]

Strategy: Univariate rational function interpolation combined with
multivariate polynomial interpolation as a hybrid racer
[JK, Klein, Lange 2020]

5 / 11



Multivariate interpolation over Zp

Studied over the last decades in theoretical Computer Science

Polynomial interpolation [Zippel 1979; Ben-Or,Tiwari 1988; Kaltofen,

Lakshman 1988; Kaltofen, Lakshman, Wiley 1990; Kaltofen, Trager 1990; Diaz,

Kaltofen 1998; Kaltofen, Lee, Lobo 2000; Kaltofen, Lee 2003; Kaltofen, Yang

2007; Javadi, Monagan 2010]

Chance of failure (probabilistic) [Zippel 1979; Schwartz 1980; Zippel 1990]

nD2T 2

p
, T ≤ (D + n

n
)

Rational function interpolation [Grigoriev, Karpinski, Singer 1990; Kaltofen,

Trager 1990; Grigoriev, Karpinski 1991; Grigoriev, Karpinski, Singer 1994;

Monagan 2004; de Kleine, Monagan, Wittkopf 2005; Kaltofen, Yang 2007; Cuyt,

Lee 2011; Huang, Gao 2017; JK, Lange 2019; Peraro 2019; JK, Klein, Lange

2020]

Strategy: Univariate rational function interpolation combined with
multivariate polynomial interpolation as a hybrid racer
[JK, Klein, Lange 2020]

5 / 11



Brief history of finite fields in HEP

General ideas:

Apply Laporta algorithm over Zp [Kauers 2008]

Remove linearly dependent equations from Laporta algorithm [Kant

2013; Maierhöfer, Usovitsch, Uwer 2017]

Interpolate master integral coefficients [von Manteuffel, Schabinger 2014]

Interpolate scattering amplitudes [Peraro 2016]

Some exemplary results:

Four-loop contributions to gluon form factor [von Manteuffel, Schabinger

2017; von Manteuffel, Schabinger 2019]

Four-loop cusp anomalous dimension [Henn et al. 2019]

Two-loop five-gluon scattering [Badger et al. 2018; Abreu et al. 2018;

Abreu et al. 2018; Badger et al. 2019; Abreu et al. 2019; Abreu et al. 2019;

Badger et al. 2019]

Three-loop gradient flow (for lattice) [Artz et al. 2019] ← Lange

...

6 / 11



Application: reduction to master integrals

Many (linear dependent) scalar integrals

F (id;d ,{qj},{Mi},{ai}) = ∫
l1,...,lL

1

Pa1

1 ⋯PaN
N

with Pi = k2
i −M2

i + i0

Solution: IBP reduction to a set of linear independent (master) integrals
[Tkachov 1981; Chetyrkin 1981]

Perform derivative

∫
l1,...,lL

∂

∂lµi
(q̃µj

1

Pa1

1 ⋯PaN
N

) = 0

to obtain linear relations between integrals

0 =∑
n

cnF (id;d ,{qj},{Mi},{a(n)i })

7 / 11



Example: single top production (4 scales + d)

p22 = 0

m1

m2

m1

q21 = m2
1

p21 = 0 q22 = 0

Reduction of all integrals that could possibly appear in the amplitude

Kira Kira + FireFly

Runtime Memory Runtime Memory

92 h 164 GiB 20 h 45 GiB

Used 48 cores on two Intel Xeon Platinum 8160

8 / 11



Example: single top production (4 scales + d) with factor scan

In many physical applications, factors in the given set of variables
occur, e.g. (d − 4)
Automatized univariate factor scan in FireFly before the
multivariate interpolation starts

Use these factors to cancel contributions to the black box

No factor scan With factor scan

smax Runtime Memory Probes Runtime Memory Probes

4 33 h 67 GiB 2745200 20 h 45 GiB 1624200

Used 48 cores on two Intel Xeon Platinum 8160

9 / 11



Example: five-light-parton scattering (5 scales + d) preliminary

p1
l1
←−

l2 ↓
p3

p4

p2 p5

Reduction of all integrals that appear in the amplitude

Use method developed by [Guan, Liu, Ma 2019] → block-triangular
system

Trick: set MIs to zero and perform reduction sectorwise

Runtime is less than 6 days and memory consumption is below
160 GiB

Roughly 36 ⋅ 106 probes required

Used 40 cores on two Intel Xeon Gold 6138

10 / 11



Summary and Outlook

Functional interpolation techniques offer competitive alternative to
common algebraic approach

Numerous applications in physical contexts (e.g. ff insert)

FireFly as general purpose interpolation library

Outlook: Merge of Kira and FireFly is complete, need to write
the paper...

Beta available at (today or in the next few days)

https://gitlab.com/kira-pyred/kira

11 / 11

https://gitlab.com/kira-pyred/kira


Backup

11 / 11



Shifted Vandermonde system

⎛
⎜⎜
⎝

vα1 vα2 . . . vαm

v2
α1

v2
α2

. . . v2
αm

⋮ ⋮ ⋱ ⋮
vm
α1

vm
α2

. . . vm
αm

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

cα1

cα2

⋮
cαm

⎞
⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

f (y⃗ 1)
f (y⃗ 2)
⋮

f (y⃗ m)

⎞
⎟⎟⎟
⎠

Scales as O(m2) in time and O(m) in space.

11 / 11



Interpolation of multivariate polynomials I
[Zippel: 1989; Kaltofen, Lee, Lobo: 2000]

Try to interpolate

f (z1, z2, z3) = z5
1 + z1z

4
2 + z1z2z

3
3 + z5

2

using the Zippel algorithm with Newton interpolation.

Stage 1: Insert y2, y3 for z2, z3 and just interpolate z1 dependence using
Newton:

f (z1, y2, y3) = k0 + k1 ⋅ z1 + k5 ⋅ z5
1

k0, k1, k5 are multivariate polynomials in z2, z3 evaluated at y2, y3

11 / 11



Interpolation of multivariate polynomials II
[Zippel: 1989; Kaltofen, Lee, Lobo: 2000]

Stage 2: Interpolate dependence of z2 using ki,j as input with Newton

f j(z1, y
j
2, y3) = k0,j + k1,j ⋅ z1 + k5,j ⋅ z5

1

Assumption: k2,j = k3,j = k4,j = 0 for this and all other stages!

Instead of using Newton for z1 to get f j , build system of equations
(Vandermonde)

⇒ f (z1, z2, y3) = k̃0 ⋅ z5
2 + k̃1 ⋅ z1z2 + k̃2 ⋅ z1z

4
2 + k̃5 ⋅ z5

1

Proceed with z3 analogously using k̃i(y3)

Benefits: Bound on evaluations of f to fully interpolate the function is
(n+R

R
)⇔ all possible coefficients, Vandermonde systems O(m2) in time

11 / 11



Interpolating rational functions

Much more involved than polynomial interpolation (normalization
issues) but doable [Cuyt, Lee: 2011]

f (z⃗) = 3z1 + 7z2

z1 + z2 + 4z1z2

Idea: map multivariate function to dense univariate function by
homogenizing with a new variable and perform a variable shift to
normalize

Note: Coefficients are multivariate polynomials in z⃗! Use previous
strategies to get their analytical form!

f (ty⃗ + s⃗) = 316 + 464t

1 + 178t + 317t2

11 / 11



Interpolating rational functions - formulae

How to get f (ty⃗ + s⃗)?

Thiele interpolation (no knowledge about f needed)

T (t) = b0 + (t − t1)
⎛
⎝
b1 + (t − t2)(b2 + (t − t3) (⋅ ⋅ ⋅ +

t − tr
br
)
−1

)
−1⎞
⎠

−1

Better: System of equations (degree bound needed)

f (z) = ∑R
i=0 ni(z)

1 +∑R′

j=1 dj(z)
⇒

R

∑
i=0

ni(z) − f (z)
R′

∑
j=1

dj(z) = f (z)

11 / 11



Extended Euclidean Algorithm

Q: How to find general solution of

a s + b t = gcd(a,b) ,

where a,b is input?

A: Extended Euclidean Algorithm (also used for inverse in finite field)

function extended_gcd(a, b)
s := 0; old_s := 1
t := 1; old_t := 0
r := b; old_r := a

while r != 0
quotient := old_r / r
(old_r , r) := (r, old_r - quotient * r)
(old_s , s) := (s, old_s - quotient * s)
(old_t , t) := (t, old_t - quotient * t)

output "Bezout coefficients :", (old_s , old_t)
output "greatest common divisor:", old_r

11 / 11



From finite fields back to rational numbers I

Rational Reconstruction algorithm [Wang 1981]:

Input: Integers p > a ≥ 0

Output: Rational number e ≡ r/t such that

a = e mod p or FAIL

Succeeds if ∣r ∣, ∣t ∣ ≤
√
p/2

e is unique [Wang, Guy, Davenport 1982]

Alternative: Maximal Quotient Rational Reconstruction [Monagan 2004]:

MQRR performs better in the average case but can perform worse

Race Wang and Monagan [JK, Lange 2019]

What if p is too small to get e?

11 / 11



From finite fields back to rational numbers II

Q: Can one reuse images in multiple Zpi ,

a1 = e mod p1 ,

a2 = e mod p2 ,

of a rational number e?

A: Yes, Chinese Remainder Theorem

Input: Two pairs of integers ai and pi such that

ai = e mod pi

Output: New pair a and p = p1 ⋅ p2 such that

a = e mod p

Allows to combine the results of the interpolation over several Zpi

Interpolate over Zpi until the rational reconstruction succeeds

11 / 11


