Functional interpolation techniques

Jonas Klappert 23.06.2020, Young Scientist Forum

Collaborators FireFly project: S.Y. Klein, F. Lange Collaborators Kira project: F. Lange, P. Maierhöfer, J. Usovitsch

Problems in state-of-the-art calculations

Problem: Complexity becomes bottleneck for CAS-like approaches

For example: multi-scale problems

$$\# \text{nonzero terms} \propto \binom{D+n}{n}$$

D = 100 for $n = 4 \rightarrow 4.6 \cdot 10^{6}$ D = 100 for $n = 5 \rightarrow 9.7 \cdot 10^{7}$

Runtime and memory consumption can become critical

Black-box interpolation problem

Black-box interpolation problem

FireFly [JK, Lange 2019; JK, Klein, Lange 2020]

 $f(x) = 14 - 304 x + 48 x^2$

 $f(x) = 14 - 58x + 48x^2 - 62.5x^3$

 $f(x) = 14 + 32x - 78x^3 + 12x^4 - 1.5x^5$

 $f(x) = 14 + 32x - 78x^3 + 12x^4 - 1.5x^5$

Finite fields

- Definition: A field with a finite number of elements
- All basic arithmetic operations are defined
- We use a prime field \mathbb{Z}_p , i.e. integers modulo a prime p

■ Example Z₇:

 $(3+5) \mod 7 = 1$ $(3-6) \mod 7 = 4$ $(4\cdot3) \mod 7 = 5$

There is a unique multiplicative inverse for every element in Z_p
 In Z₇ the inverse of 2 is 4:

$$2 \cdot 2^{-1} = 1 = 2 \cdot 4 \mod 7$$

Arithmetic is exact and fast (machine-size integer)

Multivariate interpolation over \mathbb{Z}_p

- Studied over the last decades in theoretical Computer Science
- Polynomial interpolation [Zippel 1979; Ben-Or, Tiwari 1988; Kaltofen, Lakshman 1988; Kaltofen, Lakshman, Wiley 1990; Kaltofen, Trager 1990; Diaz, Kaltofen 1998; Kaltofen, Lee, Lobo 2000; Kaltofen, Lee 2003; Kaltofen, Yang 2007; Javadi, Monagan 2010]
- Chance of failure (probabilistic) [Zippel 1979; Schwartz 1980; Zippel 1990]

$$\frac{nD^2T^2}{p}, \qquad T \le \binom{D+n}{n}$$

Multivariate interpolation over \mathbb{Z}_p

- Studied over the last decades in theoretical Computer Science
- Polynomial interpolation [Zippel 1979; Ben-Or, Tiwari 1988; Kaltofen, Lakshman 1988; Kaltofen, Lakshman, Wiley 1990; Kaltofen, Trager 1990; Diaz, Kaltofen 1998; Kaltofen, Lee, Lobo 2000; Kaltofen, Lee 2003; Kaltofen, Yang 2007; Javadi, Monagan 2010]
- Chance of failure (probabilistic) [Zippel 1979; Schwartz 1980; Zippel 1990]

$$\frac{nD^2T^2}{p}, \qquad T \le \binom{D+n}{n}$$

 Rational function interpolation [Grigoriev, Karpinski, Singer 1990; Kaltofen, Trager 1990; Grigoriev, Karpinski 1991; Grigoriev, Karpinski, Singer 1994; Monagan 2004; de Kleine, Monagan, Wittkopf 2005; Kaltofen, Yang 2007; Cuyt, Lee 2011; Huang, Gao 2017; JK, Lange 2019; Peraro 2019; JK, Klein, Lange 2020]

Strategy: Univariate rational function interpolation combined with multivariate polynomial interpolation as a hybrid racer

[JK, Klein, Lange 2020]

Brief history of finite fields in HEP

General ideas:

- Apply Laporta algorithm over \mathbb{Z}_p [Kauers 2008]
- Remove linearly dependent equations from Laporta algorithm [Kant 2013; Maierhöfer, Usovitsch, Uwer 2017]
- Interpolate master integral coefficients [von Manteuffel, Schabinger 2014]
- Interpolate scattering amplitudes [Peraro 2016]

Some exemplary results:

- Four-loop contributions to gluon form factor [von Manteuffel, Schabinger 2017; von Manteuffel, Schabinger 2019]
- Four-loop cusp anomalous dimension [Henn et al. 2019]
- Two-loop five-gluon scattering [Badger et al. 2018; Abreu et al. 2018; Abreu et al. 2018; Badger et al. 2019; Abreu et al. 2019; Abreu et al. 2019; Badger et al. 2019]
- Three-loop gradient flow (for lattice) [Artz et al. 2019] ← Lange

· . . .

Application: reduction to master integrals

Many (linear dependent) scalar integrals

$$F(\mathrm{id}; d, \{q_j\}, \{M_i\}, \{a_i\}) = \int_{l_1, \dots, l_L} \frac{1}{P_1^{a_1} \cdots P_N^{a_N}}$$

with $P_i = k_i^2 - M_i^2 + i0$

Solution: IBP reduction to a set of linear independent (master) integrals [Tkachov 1981; Chetyrkin 1981]

Perform derivative

$$\int_{l_1,\ldots,l_L} \frac{\partial}{\partial l_i^{\mu}} \left(\tilde{q}_j^{\mu} \frac{1}{P_1^{a_1} \cdots P_N^{a_N}} \right) = 0$$

to obtain linear relations between integrals

$$0 = \sum_{n} c_{n} F(\text{id}; d, \{q_{j}\}, \{M_{i}\}, \{a_{i}^{(n)}\})$$

Example: single top production (4 scales + d)

Reduction of all integrals that could possibly appear in the amplitude

Kii	ra	Kira + FireFly			
Runtime	Memory	Runtime	Memory		
92 h	164 GiB	20 h	45 GiB		

Used 48 cores on two Intel Xeon Platinum 8160

Example: single top production (4 scales + d) with factor scan

- In many physical applications, factors in the given set of variables occur, e.g. (d-4)
- Automatized univariate factor scan in FireFly before the multivariate interpolation starts
- Use these factors to cancel contributions to the black box

	N	No factor scan			With factor scan			
s _{max}	Runtime	Memory	Probes	Runtime	Memory	Probes		
4	33 h	67 GiB	2745200	20 h	45 GiB	1624200		

Used 48 cores on two Intel Xeon Platinum 8160

Example: five-light-parton scattering (5 scales + d) preliminary

Reduction of all integrals that appear in the amplitude

- Use method developed by [Guan, Liu, Ma 2019] \rightarrow block-triangular system
- Trick: set MIs to zero and perform reduction sectorwise
- Runtime is less than 6 days and memory consumption is below 160 GiB
- Roughly 36 · 10⁶ probes required

Used 40 cores on two Intel Xeon Gold 6138

- Functional interpolation techniques offer competitive alternative to common algebraic approach
- Numerous applications in physical contexts (e.g. ff_insert)
- FireFly as general purpose interpolation library
- Outlook: Merge of Kira and FireFly is complete, need to write the paper...

Beta available at (today or in the next few days)

https://gitlab.com/kira-pyred/kira

Backup

Shifted Vandermonde system

$$\begin{pmatrix} v_{\alpha_1} & v_{\alpha_2} & \dots & v_{\alpha_m} \\ v_{\alpha_1}^2 & v_{\alpha_2}^2 & \dots & v_{\alpha_m}^2 \\ \vdots & \vdots & \ddots & \vdots \\ v_{\alpha_1}^m & v_{\alpha_2}^m & \dots & v_{\alpha_m}^m \end{pmatrix} \begin{pmatrix} c_{\alpha_1} \\ c_{\alpha_2} \\ \vdots \\ c_{\alpha_m} \end{pmatrix} = \begin{pmatrix} f(\vec{y}^{\ 1}) \\ f(\vec{y}^{\ 2}) \\ \vdots \\ f(\vec{y}^{\ m}) \end{pmatrix}$$

Scales as $\mathcal{O}(m^2)$ in time and $\mathcal{O}(m)$ in space.

Interpolation of multivariate polynomials I [Zippel: 1989; Kaltofen, Lee, Lobo: 2000]

Try to interpolate

$$f(z_1, z_2, z_3) = z_1^5 + z_1 z_2^4 + z_1 z_2 z_3^3 + z_2^5$$

using the Zippel algorithm with Newton interpolation.

Stage 1: Insert y_2, y_3 for z_2, z_3 and just interpolate z_1 dependence using Newton:

$$f(z_1, y_2, y_3) = k_0 + k_1 \cdot z_1 + k_5 \cdot z_1^5$$

• k_0, k_1, k_5 are multivariate polynomials in z_2, z_3 evaluated at y_2, y_3

Interpolation of multivariate polynomials II [Zippel: 1989; Kaltofen, Lee, Lobo: 2000]

Stage 2: Interpolate dependence of z_2 using $k_{i,j}$ as input with Newton

$$f_j(z_1, y_2^j, y_3) = k_{0,j} + k_{1,j} \cdot z_1 + k_{5,j} \cdot z_1^5$$

- Assumption: $k_{2,j} = k_{3,j} = k_{4,j} = 0$ for this and all other stages!
- Instead of using Newton for z_1 to get f_j , build system of equations (Vandermonde)

$$\Rightarrow f(z_1, z_2, y_3) = \tilde{k}_0 \cdot z_2^5 + \tilde{k}_1 \cdot z_1 z_2 + \tilde{k}_2 \cdot z_1 z_2^4 + \tilde{k}_5 \cdot z_1^5$$

Proceed with z_3 analogously using $\tilde{k}_i(y_3)$

Benefits: Bound on evaluations of f to fully interpolate the function is $\binom{n+R}{R} \Leftrightarrow$ all possible coefficients, Vandermonde systems $O(m^2)$ in time

Much more involved than polynomial interpolation (normalization issues) but doable [Cuyt, Lee: 2011]

$$f(\vec{z}) = \frac{3z_1 + 7z_2}{z_1 + z_2 + 4z_1z_2}$$

- Idea: map multivariate function to dense univariate function by homogenizing with a new variable and perform a variable shift to normalize
- Note: Coefficients are multivariate polynomials in z? Use previous strategies to get their analytical form!

$$f(t\vec{y} + \vec{s}) = \frac{316 + 464t}{1 + 178t + 317t^2}$$

How to get $f(t\vec{y} + \vec{s})$?

Thiele interpolation (no knowledge about f needed)

$$T(t) = b_0 + (t - t_1) \left(b_1 + (t - t_2) \left(b_2 + (t - t_3) \left(\dots + \frac{t - t_r}{b_r} \right)^{-1} \right)^{-1} \right)^{-1}$$

Better: System of equations (degree bound needed)

$$f(z) = \frac{\sum_{i=0}^{R} n_i(z)}{1 + \sum_{j=1}^{R'} d_j(z)} \quad \Rightarrow \quad \sum_{i=0}^{R} n_i(z) - f(z) \sum_{j=1}^{R'} d_j(z) = f(z)$$

Extended Euclidean Algorithm

Q: How to find general solution of

as + bt = gcd(a, b),

where *a*, *b* is input?

A: Extended Euclidean Algorithm (also used for inverse in finite field)

```
function extended_gcd(a, b)
s := 0; old_s := 1
t := 1; old_t := 0
r := b; old_r := a
while r != 0
    quotient := old_r / r
    (old_r, r) := (r, old_r - quotient * r)
    (old_s, s) := (s, old_s - quotient * s)
    (old_t, t) := (t, old_t - quotient * t)
output "Bezout coefficients:", (old_s, old_t)
output "greatest common divisor:", old_r
```

From finite fields back to rational numbers I

Rational Reconstruction algorithm [Wang 1981]:

```
Input: Integers p > a \ge 0
```

• Output: Rational number $e \equiv r/t$ such that

 $a = e \mod p$ or FAIL

Succeeds if $|r|, |t| \le \sqrt{p/2}$

e is unique [Wang, Guy, Davenport 1982]

Alternative: Maximal Quotient Rational Reconstruction [Monagan 2004]:

- MQRR performs better in the average case but can perform worse
- Race Wang and Monagan [JK, Lange 2019]

What if p is too small to get e?

From finite fields back to rational numbers II

Q: Can one reuse images in multiple \mathbb{Z}_{p_i} ,

 $a_1 = e \mod p_1,$ $a_2 = e \mod p_2,$

of a rational number e?

A: Yes, Chinese Remainder Theorem

Input: Two pairs of integers a_i and p_i such that

 $a_i = e \mod p_i$

• Output: New pair *a* and $p = p_1 \cdot p_2$ such that

 $a = e \mod p$

- Allows to combine the results of the interpolation over several \mathbb{Z}_{p_i}
- Interpolate over \mathbb{Z}_{p_i} until the rational reconstruction succeeds

					meal	ST DOWN	厚筆
十四蘇為一兩十六兩為	解之所起起於熊十春度	一引五十尺為一端四十二	十分為一寸十寸為一尺	為一線十線為一毫十毫	慶之所起起於忽欲知其	唐朝課堂行堂李報書	孫子第經卷上 四
一方三十方為一鉤	三余十余為一里	尺為一疋六尺為一	十尺為一丈十丈為	為一種十難為一分	怒靈吐綠為怒十刻	新華法学奉 乾法釋	