

Assessment of satellite- and ground-based observed total column water vapor variabilities and their relation to convective initiation in Germany

Cintia Carbajal Henken, Rene Preusker & Jürgen Fischer

Institute for Space Sciences, Freie Universität Berlin

Exploiting a large set of observations

regarding the evolution of the precipitation generating atmosphere

Precipitation and satellite observations

Freie Universität Berlin

Actually, precipitation is invisible for passive satellite VIS/NIR/TIR observations, since precipitation is usually below opaque clouds!

5 - 7 October 2020

RealPEP online conference

Precipitation and satellite observations

Actually, precipitation is invisible for passive satellite VIS/NIR/TIR observations, since precipitation is usually below opaque clouds!

Novel satellite TCWV and cloud products will support the monitoring of:

Pre-convective environment & convective initiation

- High precision TCWV fields from polar-orbiting platforms (OLCI/MODIS) with spatial resolutions up to 250m
- Temporal variability of TCWV only monitored by geostationary MSG-SEVIRI observations (15 min.), but with lower spatial resolution (4x7km²) and precision (later MTG)

Convective cloud structures, precursors of precip and precip intensification

 Cloud observations from geostationary satellite MSG-SEVIRI observations (later MTG)

Our approach is two-fold in this project

• Match-up of various observational datasets for statistical study on CI detection

- OLCI/MODIS TCWV retrieval set-up
- Processing/collecting OLCI/MODIS TCWV, GPS TCWV, MSG-SEVIRI cloud products
- Mimicking observational capabilities of future MTG-FCI

Preparations for future MTG-FCI TCWV retrievals

- Set-up of MSG-SEVIRI TCWV retrieval
- RTTOV-based sensitivity studies for MTG-FCI TCWV retrievals
- First testing with test simulation data of MTG-FCI

OLCI TCWV processing and validation

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 OLCI Total column water vapor [kg/m²]

MODIS-Terra at 10.20 UTC

RealPEP online conference

Small-scale convective structures in TCWV fields

Freie Universität Berlin

MERIS 300m high resolution TCWV Case study of horizontal convective rolls in Central-Europe

From Carbajal Henken et al. 2015

OLCI TCWV processing and validation

- Validation with well-established ground-based TCWV observational datasets
- Global for Nov 2017 Oct 2018
- German domain for 2016-2018, April Sept
- Preusker et al., in prep

Cintia Carbajal Henken (FUB)

GPS and MSG-SEVIRI observations of TCWV and clouds

Freie Universität Berlin

Realpep case study day 19 July 2017 MSG-SEVIRI V1 TCWV retrievals

Circles represent GPS TCWV values at GPS stations

RealPEP online conference

Combining TCWV from OLCI and GPS and cloud products from MSG-SEVIRI

Match-up of datasets for 2016-2018, April-Sept

- Select GPS stations from network: filtered by height and height variations around station
- OLCI TCWV 2d fields around each GPS station (box with 50km radius, at least 30% cloud free pixels)
- GPS TCWV timeseries around OLCI overpass time (3h)
- MSG-SEVIRI cloud parameter 2d fields around GPS stations around OLCI overpass time (3h)

Combining TCWV from OLCI and GPS and cloud products from MSG-SEVIRI

Match-up of datasets for 2016-2018, April-Sept

- Select GPS stations from network: filtered by height and height variations around station
- OLCI TCWV 2d fields around each GPS station (box with 50km radius, at least 30% cloud free pixels)
- GPS TCWV timeseries around OLCI overpass time (3h)
- MSG-SEVIRI cloud parameter 2d fields around GPS stations around OLCI overpass time (3h)

Stratification of statistical results by cloud type occurrence:

- All, Clear, Cloudy, Convection, Deep convection
- Combine thresholds for MSG-SEVIRI cloud top temperature (CTT) and cloud optical thickness (COT)
- Within 1 to 3 hours after OLCI overpass for at least 2 consecutive time steps

5 - 7 October 2020

Results: OLCI TCWV spatial variability

Freie Universität Berlin

Objective weather type classification (DWD): All

5 - 7 October 2020

RealPEP online conference

Objective weather type classification (DWD): All

Objective weather type classification (DWD): All

Freie Universität Berlin

5 – 7 October 2020

RealPEP online conference

Freie Universität Berlin

OWTC: South-westerly flow

Spatial autocorrelation parameters

Quantify spatial autocorrelation and identify local clusters of increased TCWV or TCWV boundaries

Positive spatial autocorrelation, I > 0

No spatial autocorrelation, I = 0

Negative spatial autocorrelation, I < 0

From Zhu & Liu, 2018

Local Moran's I (Anselin, 1995)

- Assess feature similarity between neighboring data points
- Spatial weights object W

Freie Universität Berlin

Spatial autocorrelation parameters

Weekly climatology map for beginning of May

Spatial autocorrelation parameters

9.0 10.5 12.0 13.5 15.0 7.5 16.5 Total column water vapor [kg/m²]

-3 -2 -1 0 -4 1 Total column water vapor anomaly [kg/m²]

20080509 0941 UTC

RealPEP online conference

Spatial autocorrelation parameters

6 10 4 8 Morans local I value

RealPEP online conference

Cintia Carbajal Henken (FUB)

14°F

2

Conclusions

Our approach is two-fold in this project

Match-up of various observational datasets for statistical study on CI detection

- Finished successful set-up, processing and evaluation of OLCI/MODIS TCWV retrievals
- Finished collection and preparation match-up of OLCI, GPS and MSG-SEVIRI satellite observations
- Working on statistical study to assess potential of high spatial and temporal resolution TCWV fields for early CI detection (and enhanced precipitation nowcasting)

Conclusions

Our approach is two-fold in this project

- Match-up of various observational datasets for statistical study on CI detection
 - Finished successful set-up, processing and evaluation of OLCI/MODIS TCWV retrievals
 - Finished collection and preparation match-up of OLCI, GPS and MSG-SEVIRI satellite observations
 - Working on statistical study to assess potential of high spatial and temporal resolution TCWV fields for early CI detection (and enhanced precipitation nowcasting)

Preparations for future MTG-FCI TCWV retrievals

- Finished first version of set-up of MSG-SEVIRI TCWV retrieval; low precision, problems with cloud mask
- RTTOV-based sensitivity studies for MTG-FCI TCWV retrievals indicate potential of more accurate TCWV retrievals
- Working on first TCWV retrievals with test simulation data of MTG-FCI

Outlook

Our approach is two-fold in this project

Match-up of various observational datasets for statistical study on CI detection

- Also process OLCI data for years 2019 and 2020, include observations from Sentinel-3b
- Elaborate/refine descriptors for TCWV variability and CI detection in statistical study
- Merge with QPN fields from Ricardo

Outlook

Our approach is two-fold in this project

Match-up of various observational datasets for statistical study on CI detection

- Also process OLCI data for years 2019 and 2020, include observations from Sentinel-3b
- Elaborate/refine descriptors for TCWV variability and CI detection in statistical study
- Merge with QPN fields from Ricardo

Preparations for future MTG-FCI TCWV retrievals

- Switch to CLAAS V2 MSG-SEVIRI cloud products and perform extended evaluation
- Perform MTG-FCI TCWV retrievals for test simulation data and evaluation

Thank you!

5 - 7 October 2020

RealPEP online conference

Data (Future data)

Geostationary satellite MSG/SEVIRI

(2021: MTG/FCI(,LI,IRS))

- Time resolution: 15 min.
- Spatial resolution: ~ 4x7 km²
- Variables from SEVIRI: CF, COT, REF, CPH, CWP, CTP, CTH, CTT, (TCWV)
- TCWV, (Lightning, clear sky profiles of humidity and temperature)

Polar orbiting satellites:

- Passive imagers MODIS + MERIS/AATSR + OLCI/SLSTR (2021+ Sentinel 3 c/d, 2020 POST-EPS):
 - Time resolution: ~ 2 times daily (n times!)
 - Spatial resolution: ~ 1x1 km² (0.5kmx0.5km)
 - Variables: CF, COT, REF, CPH, CWP, CTP, CTH, CTT, TCWV

Active instruments CPR and CALIOP (202X Earthcare , but difficult orbit for Polar):

- Time resolution: ~ 2 times daily
- Spatial resolution: 1-d track
- Variables: vertical profiles of clouds, cloud typing

Ground-based observations GNSS:

- Time resolution: 15 min.
- Spatial resolution: ~400 stations in German network
- Variable: TCWV

Objective weather type classification

DWD weather classification for Germany and neighbouring areas (see website DWD)

- Results of the operational numerical weather analysis and forecast system (12-UTC analysis and forecasts until 7 days) of the DWD.
- 40 Classes, based on meteorological criteria:
 - wind direction (advection direction of air masses)
 - cyclonality (high- or low pressure influence)
 - humidity of the atmosphere

Relation to (deep) convective systems

- During fair weather situations in Germany, anti-cyclonic and easterly flow, local processes will have larger influence on changes of TCWV then during westerly flows where synoptic disturbances might dominate
- Preference of humid SW flow for intense thunderstorms, which produce tornadoes and high precipitation amounts (Bissoli and Müller-Westermeier, 2005)

Stratification by objective weather type classification

Freie Universität Berlin

GPS TCWV temporal evolution

RealPEP online conference

Case study day 19 July 2017

GPS TCWV temporal evolution

Freie Universität Berlin

OLCI integrated water vapor

MSG-SEVIRI

- 3 km spatial resolution at sub-satellite point
- 15 min temporal resolution
- Spectral channels:

TABLE I. Spectral channel characteristics of SEVIRI providing central, minimum, and maximum wavelength of the channels and whether the channel is an absorption or a window channel. A concise summary of the use of the spectral channels is given in the section titled "SEVERI spectral channels."

Channel no.		Cha spect	racteristi ral band	ics of (μm)	Main gaseous absorber or window	
		$\lambda_{_{cen}}$	$\lambda_{_{min}}$	$\lambda_{_{max}}$		
- I	VIS0.6	0.635	0.56	0.71	Window	
2	VIS0.8	0.81	0.74	0.88	Window	
3	NIR1.6	1.64	1.50	1.78	Window	
4	IR3.9	3.90	3.48	4.36	Window	
5	WV6.2	6.25	5.35	7.15	Water vapor	
6	WV7.3	7.35	6.85	7.85	Water vapor	
7	IR8.7	8.70	8.30	9.10	Window	
8	IR9.7	9.66	9.38	9.94	Ozone	
9	IR10.8	10.80	9.80	11.80	Window	
10	IR 12.0	12.00	11.00	13.00	Window	
н	IR13.4	13.40	12.40	14.40	Carbon dioxide	
12	HRV	Broadban	d (about (0.4 – 1.1)	Window/water vapor	

From Schmetz et al. 2002

5 - 7 October 2020

MSG-SEVIRI

- 3 km spatial resolution at sub-satellite point
- 15 min temporal resolution
- Spectral channels:

TABLE I. Spectral channel characteristics of SEVIRI providing central, minimum, and maximum wavelength of the channels and whether the channel is an absorption or a window channel. A concise summary of the use of the spectral channels is given in the section titled "SEVERI spectral channels."

Channel no.		Cha spect	racteristi ral band	ics of (µm)	Main gaseous absorber or window	
		$\lambda_{_{cen}}$	$\lambda_{_{min}}$	$\lambda_{_{max}}$		
1	VIS0.6	0.635	0.56	0.71	Window	
2	VIS0.8	0.81	0.74	0.88	Window	
3	NIR1.6	1.64	1.50	1.78	Window	
4	IR3.9	3.90	3.48	4.36	Window	
5	WV6.2	6.25	5.35	7.15	Water vapor	
6	WV7.3	7.35	6.85	7.85	Water vapor	
7	IR8.7	8.70	8.30	9.10	Window	
8	IR9.7	9.66	9.38	9.94	Ozone	
9	IR10.8	10.80	9.80	11.80	Window	
10	IR 12.0	12.00	11.00	13.00	Window	
н	IR13.4	13.40	12.40	14.40	Carbon dioxide	
12	HRV	Broadban	d (about (0.4 – 1.1)	Window/water vapor	

From Schmetz et al. 2002

MTG-FCI

- 1 km spatial resolution at sub-satellite point for VIS/NIR channels
- 10 min temporal resolution, 2.5 min for local scale (Europe)
- Spectral channels:

Instrument information							
CHANNEL	CENTRE WAVELENGTH	SPECTRAL WIDTH	SPATIAL SAMPLING DISTANCE (SSD)				
VIS 0.4	0.444 μm	0.060 μm	1.0 km				
VIS 0.5	0.510 μm	0.040 μm	1.0 km				
VIS 0.6	0.640 µm	0.050 µm	1.0 km; 0.5 km*				
VIS 0.8	0.865 μm	0.050 μm	1.0 km				
VIS 0.9	0.914 μm	0.020 μm	1.0 km				
NIR 1.3	1.380 µm	0.030 μm	1.0 km				
NIR 1.6	1.610 µm	0.050 μm	1.0 km				
NIR 2.2	2.250 μm	0.050 μm	1.0 km; 0.5 km*				
IR 3.8 (TIR)	3.800 μm	0.400 μm	2.0 km; 1.0 km*				
WV 6.3	6.300 μm	1.000 μm	2.0 km				
WV 7.3	7.350 μm	0.500 μm	2.0 km				
IR 8.7 (TIR)	8.700 μm	0.400 μm	2.0 km				
IR 9.7 (O ₃)	9.660 μm	0.300 μm	2.0 km				
IR 10.5 (TIR)	10.500 μm	0.700 μm	2.0 km; 1.0 km*				
IR 12.3 (TIR)	12.300 µm	0.500 μm	2.0 km				
10 10 0 (00)	40.000	0.000	0.01				

From: https://www.eumetsat.int/website/home/Satellites/FutureSatellites/ MeteosatThirdGeneration/MTGDesign/index.html

Freie

Universität Berlin

5 - 7 October 2020

RealPEP online conference

MSG-SEVIRI

VIS channel at 0.6 micron

MTG-FCI

Simulated VIS channel at 0.6 micron

Freie Universität Berlin

5 - 7 October 2020

MSG-SEVIRI

VIS channel at 0.6 micron

MTG-FCI

Simulated VIS channel at 0.6 micron

D

Freie

Universität Berlin

MSG-SEVIRI TCWV retrievals

Retrieval errors & uncertainties

- Dots are 'reality'
- Crosses are retrieved values
- · Error bars are retrieval uncertainties

T and q profile shapes known from model reanalyses ERA5

5 - 7 October 2020

RealPEP online conference

MSG-SEVIRI TCWV retrievals

Retrieval errors & uncertainties

- Dots are 'reality' ٠
- Crosses are retrieved values ٠
- Error bars are retrieval uncertainties ٠

July

Climatological atmospheric profiles from 30 years of ERA5 data. Mean profiles and standard deviation.

RealPEP online conference

Towards MTG-FCI TCWV retrievals

Retrieval errors & uncertainties

- Dots are 'reality'
- Crosses are retrieved values
- Error bars are retrieval uncertainties

T and q profile shapes known from model reanalyses ERA5

RealPEP online conference

Cintia Carbajal Henken (FUB)

5 - 7 October 2020

Towards MTG-FCI TCWV retrievals

Berlin

Retrieval errors & uncertainties

Dots are 'reality' ٠

Berlin

2000 4000 6000 8000 10000 12000 14000 16000 18000

5 - 7 October 2020

Water vapour concentration [ppmv]

200

400

600

800

1000

Pressure [hPa]

Crosses are retrieved values ٠

- DIF

- MAM

- SON

— JJA

Frror bars are retrieval uncertainties .

285

10

12

Total column water vapor [kg/m²]

14

Climatological atmospheric profiles from 30 years of ERA5 data.

20

400

600

800

1000 L

220

240

260

Temperature [K]

Pressure [hPa]

26

28

30

Total column water vapor [kg/m²]

32

34

36

298

24

Cintia Carbajal Henken (FUB)

16

18