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Review

Application of A for QPE using the ZPHI method (Testud et al. 2000)

B Inherit the advantages of R(Kpp) but less noisy in light rain and suffer less from spatial

degradation.

B Previous studies at S band show a significant sensitivity of a,, to DSD (Drop Size
Distribution) variability
-> the dependence of ay,, on rain type.

-> the change of Z,; with Z,,, (AAZ% or the slope Ky, in the relationship of Zyz = Ky ,yvZyy +
H

constant) (Wang et al. 2017, 2019; Zhang et al. 2020).

-> This so-called Zy, slope is immune to a potential radar system bias.

B R(A,) was proved to be even less sensitive to DSD variability and may provide higher

accuracy in areas of strong attenuation compared to R(Ay).




Review

Application of A for QPE using the ZPHI method at C band

B The susceptibility of ay,, to DSD variability is more pronounced compared to S band Tromel
et al. (2014). The dependence of a;,y, on Zy; is non-monotonic, and its assessment is further

complicated by stronger (differential) attenuation and resonance effects.

B The enhanced sensitivity of the coefficients in R(A,,,) relations to DSD characteristics
-> In tropical Taiwan, R(A,,y) relations are derived depending on rain types (Wang et al. 2017).
- In the mid-latitudes, R-Ky, scatter plots can be much narrower than those of R-A,,, for
heavier continental rain dominated by large raindrops originating from large graupel or hail
(Thompson et al. 2018).

B The combination of R(Kyp) and R(A,,y) relations
- the generally better applicability of R(Kyp) at shorter wavelength.

-> shortcomings of the R(A,,y) algorithms in rain mixed with hails.




M Thies disdrometer
v from DWD (the German Meteorological Service)

v from the Institute for Geosciences - Section Meteorology at the Uni Bonn
-> 84,169 1-minute DSDs

B OTT Pluvio Rain gauge measurements

B RODOLAN (RAdar-OnLine-Aneichung) RW
v'DWD’s operational 1 km-resolution, hourly QPE product, which is based on reflectivities

only but adjusted to rain gauge measurements.




B DWD C-band polarimetric radars

v  terrain-following elevation angle

B Four convective events on (12-24UTC)

v 19th July 2017
v 28t July 2018
v 9t August 2018
v 20t July 2019
m A stratiform event on 25t July 2017 (0-24UTC) 2 (L e
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Methodology - Scan-based a deriving from Z, slopes
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Nw (normalized raindrop concentration)
as a proxy for different precipitation
classes, for which different Z,; slopes and
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radar-derived K,y

M a first-guess attenuation correction

M a linear fit to the median Ly values computed
from each 1 dBZ interval in the range 25 dBZ to

Ay = aynKpp
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Methodology - K, proxy

B The Oy, bump due to the non-uniform beam
filling could be more severe at C band with

the combination of the resonance effect.

WK, is replaced by K,," as 40 dBZ < Z,, < 55
dBZ and K, < 0.25 degkm-".

Adpp(ry,17)
2 [, [Zu()10%4ds

Kpp (r) = [Zy (1)]05*

Zhang et al. 2013

B The ranges with Z, > 50 dBZ (potential
existence of hail) are excluded from the
integration in the ZPHI method to prevent

extremely high A,, values (Wang et al.,
2017 and 2019).

Zy (dBZ)

1040

095 4

Rrv

085 +

.80

Zy and Zpg

m

T
Fud

090 4

%?%

!

Kpp (degfkm)

50 100

150
# bin

200

250

Zor (dB)

dop

| =—— BRaw for
1=t Smoothed foe

,Mﬂ"f

Kop

— Kor

T =—— Proxy Kne

—‘-—n——.-"'ﬂ-_-

50 100

150
# bin

200

250




Methodology - The set of rainfall retrievals

The set of rainfall retrievals

With Ky.* replacement

_ R(Zo)/R(Kop) | R(Z)/R(Kop)"
Zybased R(Z) »40 dB7 +40 dB7

] R(Ay)/R(Kpp)* R(Ay)/R(Kpp)* R(AL*)/R(Kpp)*
Ay-based (50 dBZ) (>40 dBZ) (>40 dBZ)

_ RUA/R(Kop) | RU/RKop) | RO /R(Kpp)?
A-based 50 dR7) (>40 dR7)

/

With adjusted «y,,

The rain rate relationships derived from measured DSDs

R(Zy) = 0.052Z,%>7 R(Kpp) = 20.7Kpp""? R(Ay) = 121.384,°7* R(4y) = 193.174, %%
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Result - convective cases
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RiZy)-based R(Ag)-based R(A)-based

R(ZH)

4 R(Zy)/RIKpe) ; thr=40dBZ

RiZy)-based RiAy)-based R(A,)-based

¥ R(Zy)/R(Kpp)* ; thr=40dBZ
N R(Agy)/R(Kpp)* ; thr=50dBZ

B R(Z,) algorithm shows the highest NRMSE and lowest CC.
B R(Kp) or R(Kyp)™ further improves the scores.

A, -based :

B R(A,)/R(Kpp)” shows larger NMB and NRMSE than R(A,)/R(Kpp)-
B R(A,,)/R(Kyp) reveal comparable performances.

RiZy)-based R(Ag)-based R(A)-based

0 R{Aww)RIKpe)* ; thr=40dBZ
. R(Aq*)RI(Kpe)* ; thr=40dBZ
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Result - convective cases

QPE (mm)

QPE (mm)

The comparison of R(A,")/R(Kyp)” and RW products shows a good agreement.
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Result - convective cases

NMB
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B 7 -based : the NMBs of the algorithms with R(Kyp)*
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— at each rain intensity are between or smaller than the other two

- always have lower error than R(Z)/R(Kyp) in moderate and heavy rain

H A, -based:

9

result in smaller NMBs in

heavy rain than the ones with the threshold of 50 dBZ
- when compared to the R(A,,y)/R(Kyp)™ algorithms, R(A,,,*)/R(Kpp)* reduce

again the error in light rain
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based on 3-h accumulated rainfall
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Heavy : >22.5 mm
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Result - convective cases

The improvement is achieved only by reducing the bias

a scan-based a,,, represents an average value but cannot take care of
the various precipitation types occurring within a scan, and thus

hampers the improvement of NRMSE and CC.

- ray-based ay,y

B 7, -based : the NMBs of the algorithms with R(Kyp)* based on 3-h accumulated rainfall
Light : 0-7.5 mm
- at each rain intensity are between or smaller than the other two moderate : 7.5-22.5 mm
Heavy : >22.5 mm

- always have lower error than R(Z)/R(Kyp) in moderate and heavy rain

H A, -based:
> result in smaller NMBs in
heavy rain than the ones with the threshold of 50 dBZ
- when compared to the R(A,,y)/R(Kyp)™ algorithms, R(A,,,*)/R(Kpp)* reduce

again the error in light rain
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Result - convective cases
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In areas right behind the hail core with strong attenuation, all the products show several

underestimated bands along the rays.

- the integral process should be reset in each pure-rain segment for the ZPHI method.
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Result - stratiform
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Result - stratiform

R(Zn) /R (Kpp)*

—3800 - \
5
—3850 - § BOO EI—@ :
LE mr i .
£ —3900 - / '
=
= —3950 - ﬁ £ 1
—4000 - - 3
H 1 . - 25.1
—4050 - ] - -_.‘?“f MD N
e
—4100 4 i : ] T T - 12 .6
E
R{Ay * )/R(Kpp)* =
- 6.3
~3800 - 3
: ROS 3.2
~3850 - 1=
T —3900 16
=
= 3950 -
0.0
~4000 - ] A
HNR HNR .
—4050 - =) ] N
7 MD g 7 MD 3
_41[:"] T i ?‘lt _1.9 T T I Iﬂli _+Lf T
-100 0 100 200 -100 0 100 200 ,
W-E (km) W-E (km) @



Conclusions and future work

B The Z,-based algorithms with R(K,p)* show lower NMBs in moderate and heavy rain compared

to R(Kpp)-

B After the adjustments, NMBs are decreased and the QPE performances of R(A,;")/R(Ky)" and

R(A,')/R(Kyp)" are comparable.
B The derived hybrid QPE products are quite consistent with the RW product.

B A,,-based rainfall retrievals further mitigate the PBB problem.




Conclusions and future work

B An average scan-based a,, value cannot satisfy the case when the rain within a scan is
inhomogeneous, and thus limits the improvement of NRMSE and CC.

-> an optimization of net a,, along the ray or within the segment

W Ignoring @y, from the cell and directly connecting pure rain segments into a path will miss the
attenuation from the cell which should propagate to the bins behind, and lead to underestimated
A,y (rainfall) in the latter segment.

- the segmentation of a ray in the case of heavy rain containing large drops or hail

B The performance of A, -based products in stratiform rain is worse than that of Z,-based

products, which should be addressed with great care in ongoing and future research.
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