Assessing the benefits of specific attenuation for quantitative precipitation estimation with a C-band radar network

Ju-Yu Chen¹, Clemens Simmer¹, Alexander Ryzhkov², Silke Trömel¹

Institute for Geosciences, Section Meteorology, University of Bonn, Germany¹

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK²

5th Oct. 2020

Application of A for QPE using the ZPHI method (Testud et al. 2000)

- Inherit the advantages of $R(K_{DP})$ but less noisy in light rain and suffer less from spatial degradation.
- Previous studies at S band show a significant sensitivity of $\alpha_{H/V}$ to DSD (Drop Size Distribution) variability
 - \rightarrow the dependence of $\alpha_{\rm H/V}$ on rain type.

→ the change of Z_{DR} with $Z_{H/V}$ ($\frac{\Delta Z_{DR}}{\Delta Z_H}$ or the slope $K_{H/V}$ in the relationship of $Z_{DR} = K_{H/V}Z_{H/V}$ + constant) (Wang et al. 2017, 2019; Zhang et al. 2020).

 \rightarrow This so-called Z_{DR} slope is immune to a **potential radar system bias**.

R(A_V) was proved to be even **less sensitive to DSD variability** and may provide higher accuracy in areas of strong attenuation compared to R(A_H).

Application of A for QPE using the ZPHI method at C band

- The susceptibility of $\alpha_{H/V}$ to DSD variability is more pronounced compared to S band Trömel et al. (2014). The dependence of $\alpha_{H/V}$ on Z_{DR} is non-monotonic, and its assessment is further complicated by stronger (differential) attenuation and resonance effects.
- The enhanced sensitivity of the coefficients in $R(A_{H/V})$ relations to DSD characteristics \rightarrow In tropical Taiwan, $R(A_{H/V})$ relations are derived depending on rain types (Wang et al. 2017). \rightarrow In the mid-latitudes, $R-K_{DP}$ scatter plots can be much narrower than those of $R-A_{H/V}$ for heavier continental rain dominated by large raindrops originating from large graupel or hail (Thompson et al. 2018).
- The combination of $R(K_{DP})$ and $R(A_{H/V})$ relations
 - \rightarrow the generally better applicability of R(K_{DP}) at shorter wavelength.
 - \rightarrow shortcomings of the R(A_{H/V}) algorithms in rain mixed with hails.

Thies disdrometer

- ✓ from DWD (the German Meteorological Service)
- \checkmark from the Institute for Geosciences Section Meteorology at the Uni Bonn

→ 84,169 1-minute DSDs

- OTT Pluvio Rain gauge measurements
- RODOLAN (RAdar-OnLine-Aneichung) RW
 - ✓ DWD's operational 1 km-resolution, hourly QPE product, which is based on reflectivities only but adjusted to rain gauge measurements.

DWD C-band polarimetric radars

 \checkmark terrain-following elevation angle

■ Four convective events on (12-24UTC)

✓ 19th July 2017

✓ 28th July 2018

✓ 9th August 2018

✓ 20th July 2019

■ A stratiform event on 25th July 2017 (0-24UTC)

- The Φ_{DP} bump due to the non-uniform beam filling could be more severe at C band with the combination of the resonance effect.
- K_{DP} is replaced by K_{DP}^* as 40 dBZ < Z_H < 55 dBZ and K_{DP} < 0.25 degkm⁻¹.

$$K_{DP}^{*}(r) = \frac{\Delta \Phi_{DP}(r_1, r_2)}{2 \int_{r_1}^{r_2} [Z_H(s)]^{0.84} ds} [Z_H(r)]^{0.84}$$

Zhang et al. 2013

The ranges with $Z_H > 50$ dBZ (potential existence of hail) are excluded from the integration in the ZPHI method to prevent extremely high $A_{H/V}$ values (Wang et al., 2017 and 2019).

The set of rainfall retrievals

				With K _{DP} * replacement
Z _H -based	R(Z _H)	R(Z _H)/R(K _{DP}) (>40 dBZ)	R(Z _H)/R(K _{DP})*	
A _H -based	R(A _H)/R(K _{DP})* (>50 dBZ)	R(A _H)/R(K _{DP})* (>40 dBZ)	R(A _H *)/R(K _{DP})* (>40 dBZ)	
A _v -based	R(A _V)/R(K _{DP})* (>50 dB7)	R(A _V)/R(K _{DP})* (>40 dB7)	R(A _V *)/R(K _{DP})* (>40 dBZ)	

With adjusted $\alpha_{\rm H/V}$

The rain rate relationships derived from measured DSDs

$$R(Z_H) = 0.052Z_H^{0.57}$$
 $R(K_{DP}) = 20.7K_{DP}^{0.72}$ $R(A_H) = 121.38A_H^{0.74}$ $R(A_V) = 193.17A_V^{0.82}$

Result - convective cases

- Z_H-based :
- \blacksquare R(Z_H) algorithm shows the highest NRMSE and lowest CC.
- $R(K_{DP})$ or $R(K_{DP})^*$ further improves the scores.

A_{H/V}-based :

- $R(A_H)/R(K_{DP})^*$ shows larger NMB and NRMSE than $R(A_V)/R(K_{DP})^*$.
- $R(A_{H/V}^{*})/R(K_{DP})^{*}$ reveal comparable performances.

The comparison of $R(A_V^*)/R(K_{DP})^*$ and RW products shows a good agreement.

Result - convective cases

Z_H-based : the NMBs of the algorithms with $R(K_{DP})^*$

 \rightarrow at each rain intensity are between or smaller than the other two

 \rightarrow always have lower error than R(Z)/R(K_{DP}) in moderate and heavy rain

■ A_{H/V}-based :

 \rightarrow R(A_{H/V})/R(K_{DP})* with the threshold of 40 dBZ result in smaller NMBs in heavy rain than the ones with the threshold of 50 dBZ \rightarrow when compared to the R(A_{H/V})/R(K_{DP})* algorithms, R(A_{H/V}*)/R(K_{DP})* reduce again the error in light rain

based on 3-h accumulated rainfall Light : 0-7.5 mm moderate : 7.5-22.5 mm Heavy : >22.5 mm

The improvement is achieved only by reducing the bias

a scan-based $\alpha_{H/V}$ represents an **average value** but cannot take care of the various precipitation types occurring within a scan, and thus hampers the improvement of NRMSE and CC.

 \rightarrow ray-based $\alpha_{\rm H/V}$

■ Z_H -based : the NMBs of the algorithms with $R(K_{DP})^*$ \rightarrow at each rain intensity are between or smaller than the other two \rightarrow always have lower error than $R(Z)/R(K_{DP})$ in moderate and heavy rain based on 3-h accumulated rainfall Light : 0-7.5 mm moderate : 7.5-22.5 mm Heavy : >22.5 mm

■ A_{H/V}-based :

 \rightarrow R(A_{H/V})/R(K_{DP})^{*} with the threshold of 40 dBZ result in smaller NMBs in heavy rain than the ones with the threshold of 50 dBZ \rightarrow when compared to the R(A_{H/V})/R(K_{DP})^{*} algorithms, R(A_{H/V}*)/R(K_{DP})* reduce

again the error in light rain

12

Result - convective cases

In areas right behind the hail core with strong attenuation, all the products show several underestimated bands along the rays.

 \rightarrow the integral process should be reset in each pure-rain segment for the ZPHI method.

Result - stratiform

Less sensitive $\Phi_{\rm DP}$, smoothing process of $\Phi_{\rm DP}$, too low $\alpha_{\rm H/V}$ values

Result - stratiform

- The Z_H -based algorithms with $R(K_{DP})^*$ show lower NMBs in moderate and heavy rain compared to $R(K_{DP})$.
- After the adjustments, NMBs are decreased and the QPE performances of $R(A_{H}^{*})/R(K_{DP})^{*}$ and $R(A_{V}^{*})/R(K_{DP})^{*}$ are comparable.
- The derived hybrid QPE products are quite **consistent with** the **RW** product.
- A_{H/V}-based rainfall retrievals further mitigate the PBB problem.

An average scan-based $\alpha_{H/V}$ value cannot satisfy the case when the rain within a scan is inhomogeneous, and thus limits the improvement of NRMSE and CC.

 \rightarrow an optimization of **net** $\alpha_{H/V}$ along the ray or within the segment

Ignoring Φ_{DP} from the cell and directly connecting pure rain segments into a path will miss the attenuation from the cell which should propagate to the bins behind, and lead to underestimated $A_{H/V}$ (rainfall) in the latter segment.

 \rightarrow the segmentation of a ray in the case of heavy rain containing large drops or hail

The performance of $A_{H/V}$ -based products in stratiform rain is worse than that of Z_{H} -based products, which should be addressed with great care in ongoing and future research.

- Testud, J., E. Le Bouar, E. Obligis, and M. AliMehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332-356.
- Thompson, E., S. Rutledge, B. Dolan, M. Thurai, and V. Chandrasekar, 2018: Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteor. Climatol., 57, 755-775.
- Trömel, S., M. Ziegert, A. Ryzhkov, C. Chwala, C. Simmer, 2014: Using microwave backhaul links to optimize the performance of algorithms for rainfall estimation and attenuation correction. *J. Atmos. Oceanic Technol.*, **31**, 1748-1760.
- Wang, Y., P. Zhang, A. Ryzhkov, J. Zhang, and P.-L. Chang, 2014: The application of specific attenuation for tropical rainfall estimation in complex terrain. *J. Hydrometeor.*, **15**, 2250-2266.
- Wang, Y., J. Zhang, P. Zhang, A. V. Ryzhkov, and C. Fritts, 2017: The Impact of Different Precipitation Types on the Polarimetric Radar QPE Using Specific Attenuation. In: 38th Int. Conf. on Radar Meteor. August 27- September 1, 2017, Swissotel Chicago, USA.
- Wang, Y., S. Cocks, L. Tang, A. Ruzhkov, P. Zhang, J. Zhang, and K. Howard, 2019: A prototype quantitative precipitation estimation algorithm for operational S-Band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeor., 20, 985-997.
- Zhang, P., D. Zrnic, and A. Ryzhkov, 2013: Partial beam blockage correction using polarimetric radar measurements. J. Atmos. Oceanic Technol., 30, 861-872.
- Zhang, J., L. Tang, S. Cocks, P. Zhang, A. Ryzhkov, K. Howard, C. Langston, and B. Kaney, 2020: A Dual-polarization Radar Synthetic QPE for Operations. *J. Hydrometeor*.

