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Motivation – High impact weather

• Convection-permitting (km-scale) NWP has been 

operational in many countries for years (e.g. UK since 

2005)

• Particularly suited to hazard forecasting (convective 

rainfall, windstorms, fog, snow etc)

• Typically hourly cycling, limited area models

• Lead times 0-36 hours

• Including NWP-based nowcasting and/or blending 

with extrapolation-based nowcasting in first 6 hours. 
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Flooding Birmingham 27th May 2018 ©Birmingham 
Mail

Snowfall London 2nd March 2018 © Business Insider UK



Key issues 

• Some benefits from forecasting on 
these scales come from improved 
orography and modelling

• Significant benefit from DA 
(Gustafsson et al, 2018)

• Many of the fundamental problems 
for DA techniques on the km-scale 
pointed out in the early days have 
still not been solved 

(e.g. Dance, 2004, Dance et al, 2019)
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Radar data from the floods of July 11, 2012 

© Met Office 2012



Challenge: DA for convection permitting NWP 

Global/synoptic scales Convection permitting scales

Model grid spacing 10 - 40 km 1- 4 km

Error growth timescale

(nonlinearity validity)

2 or 3 days 10 mins – a few hours

Features Cyclones, fronts etc Convective storms

Important quantities Vorticity, pressure, divergence, 

humidity

+ vertical velocity, temperature, 

cloud water & ice, surface 

quantities...

Diagnostic relationships Hydrostatic balance

Linear balance (except tropics)

??

Bg Statistics Quasi-Gaussian – homogeneous 

and isotropic assumptions 

adequate with “right” variables

Non-Gaussian, non-

homogeneous, non-isotropic.

Fully 3D-multivariate

Other complications Limited area model:

-Lateral boundaries

-Multiscaling



Observations for km-scale NWP
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• Observation spatio-temporal frequency 

• Horizontal spacing

• Vertical resolution 

• Temporal frequency

• All weather, 24 hour capabilities

• Satellite data 

• Radar data 

• Mode-S EHS



Observations Gap analysis for EUCOS region
(slide from Jaqueline Sugier, Met Office/EUMETNET)
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▪ High priority variables for km-scale forecasting: Humidity, wind 
and temperature

▪ Major gaps in horizontal spacing and observation cycle
▪ MTG will help narrow the gap for humidity and temperature but 

less so in the PBL

Gap analysis for high-resolution NWP application area
Requirement taken from the WMO OSCAR RRR
https://www.wmo-sat.info/oscar/applicationareas/view/2

https://www.wmo-sat.info/oscar/applicationareas/view/2


Key issues 
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• Not affordable to increase network density to 

meet user demand (WMO Oscar req)

• Need to understand where and what 

investment will have the biggest impact, 

now and for future systems (sub-km?)

• Better tools to evaluate impact of 

observations on km-scale models and 

compare between NWS (FSOI for LAM)

• Improving impact of existing observations 

(e.g, radar, all sky radiances over land)

Example

Doppler radar winds:
- Every 75m every 10-15 mins
- Operational use superobs thinned 

to 6km 
- Use 4x  #obs with spatially 

correlated obs errors (3km 
thinning)

Simonin et al (2019)



Observation impact measures
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• How can we measure observation impact for 

our own systems?

• Benefits for particular weather types/seasons –

statistical sampling issues 

• Spatial verification for rainfall

• Measures of interest to stakeholders

• FSOI does not apply to km-scale (nonlinearity, 

statistical sampling)

• How can we compare with other systems (and 

learn from comparison)?

• Different domains

• Optimized for local severe weather (e.g., UK, 

Switzerland, tornado alley (USA))

• No common scorecard

Auligne et al FSOI 

intercomparison experiment –

now routine  JCSDA IOS system



Improving observation impact

10

• Obtaining observation impact on required scales –

• Microphysics

• Complex observation operators vs CPU time

• Rain-out (physical consistency)

• Over/Under-smoothed increments 

• Observation uncertainty vs CPU time

Global DA system increment

Ensemble w-q correlations for 20 July 2011

From Ross 

Bannister 

(2013)



Observation uncertainty
• What?

• Why?

• Uncertainty estimation

• Implementation 

• Forecast impacts 
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Observation errors (Janjic et al 2018)

Scale mismatch error

Instrument 
error

© ESA 2013

Observation
operator

error

© Met Office 2013

Observation
processing

Peter Lean



Current treatment
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• Only 5 % of some obs types are  utilised in atmospheric data assimilation. 

• This is in part due to the unknown observation error statistics.

• Currently errors are assumed uncorrelated. This is achieved by 
‘superobbing’ and thinning. 

Processed raw 
observations

Super-
observations

Thinned super-
observations

Met 

Office 

DRW 

data

Images 

from 

Waller/

Simonin



Why use correlated errors?
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Using correlated errors:

• Leads to an increase in  the analysis accuracy 

(Stewart et al. 2013).

• Leads to an increase in  the NWP skill score 

(Weston et al. 2014).

• Allows more use of the available data.

• May provide more detail on fine scales …..

Figure from Stewart et al. 2013

Bad

Good

Figure from Weston et al. 2014



Observation impact and correlated errors

(Fowler et al 2018)

• The sensitivity of the analysis to the observations depends on the correlations in both the R 

and the B-matrix.
• For SOAR matrix

• LH plot shows correlations in 
physical space for different 
lengthscales

• RH plot shows correlations in 
spectral space

Increase in length‐scale

⇒increase in uncertainty at large 

scales 

& decrease in uncertainty at small 

scales.



Observation impact and correlated errors

(Fowler et al 2018)
• Assuming H=I  the analysis sensitivity to the 

observations is given by 

•When B=R (Lo=5) the analysis is equally sensitive at all 

scales.

•When Lo>Lb the observations are more accurate than the prior 

at small scales and less accurate than the prior at large scales

⇒the analysis is more sensitive to observations of smaller 

scale features and less sensitive to larger scale features (high-

pass filter of ob increments).

•When Lb>Lo the opposite is true (low-pass filter of ob 

increments).

Eigenspectrum of S when the 
correlation in R and B are both 
described by the SOAR matrix and Lb=5



Diagnosing observation 

error statistics
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Observation error statistics can be estimated (Desroziers et al., 2005),

Background residual: 𝑑𝑏
𝑜 = 𝑦 − 𝐻(𝑥𝑏)

Analysis residual:           𝑑𝑎
𝑜 = 𝑦 − 𝐻(𝑥𝑎)

𝑹 ≈ E[𝑑𝑎
𝑜𝑑𝑏

𝑜𝑇]

• Inexact estimate depends on assumed statistics for B and R
• Using method with ensemble localization needs extra care 

BUT it is still very useful! 
Waller et al 2016a, 2017



Example – Doppler radar winds

Waller et al (2016b), joint work with UK Met Office 
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Sensitivity to assumed-B
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• Increasing variance and 

lengthscale in assumed-B 

reduces variance and 

lengthscale in diagnosed 

Re.

• Consistent with Waller et al 

(2016a) theory



Example: Using the method to find problems

• Waller, Bauernschubert et al (2019). 

Similar experiment but with COSMO-

KENDA and German radar 

• Std for 0.5 degree beam with height

• Radars 10169 and 10204 have much 

larger std.

• These observations were contaminated 

by ship tracks and wind turbines

20



Operational implementation 

(Simonin et al 2019)
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• David Simonin’s talk for effect on forecast skill !

Control, 6km thinning, no correlations = black line

Corr+6km thinning = grey line 

• Low pass filter on obs – increases weight on background 

(consistent with Fowler et al 2018)

Corr + 3km thinning  = dashed line

• Smaller lengthscales due to increased observation density –

more able to represent smaller features



Practical implementation considerations

22

• Met Office reparallelization to allow 

different distribution of obs across PEs

• Load balancing so no impact on 

overall computation time

• Computational feasibility for other obs

types ?

• How to implement long spatial 

correlations across whole domain ? 

(e.g. geostationary satellite) 



The future? 

• Hectometer-scale 

forecasting

• Global km-scale 

forecasting

• Novel observation types



Hectometer O(100m) models

• Met Office routinely runs O(300m) London model twice a day - urban focus

• Improved forecasts of fog (Boutle et al, 2016) 

• Partially resolves turbulence, but good bulk statistics (Lean et al 2019)

• No DA currently 



Km-scale global models

• Example from IBM

• ECMWF plans, RIKEN “Fugaku” 
simulations…

• Commercial ambition? 

• Personalized forecasting for the 
street corner

• More use of deep learning rather 
than physical process-based 
models? 

• Convective grey-zone

• May still need smoothed DA for 
medium-range forecasting? 
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Which is the right modelling approach for the future?
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• Large ensemble, limited area km-scale

• Limited area hectometer scale 

• Global km-scale 

• Coupling with land-surface? 

Depends on what you want to forecast e.g. fog, 

floods, snow, ice, tornados, hurricanes, urban heat 

stress, air quality

On which lead times: Nowcasting - Seasonal

And for which users…probabilistic or deterministic 

forecasts? 

L F Richardson’s forecast factory



Future observing networks
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• Likely to be more heterogeneous 

• Pragmatic, flexible approach

• use what we have to our best advantage

• ready to adapt quickly 

• Better use of existing observations

• Novel observation types

• Scientific 

• Commercial  

• Non-conventional (crowd-sourced, opportunistic)



Radar reflectivity attenuation problem
• Attenuation was a big problem for 

intense rainfall estimation at C-band 

• In London floods of 2007, large areas 

of 60% underestimates

LONDON FLOODS 20 JULY 2007

100km

0dB

55dB

Radar is fantastic for measuring rainfall - apart from when we 

really need it in heavy flood producing rainfall

Rob Thompson, Anthony Illingworth



Detecting emission with radar
• Attenuation is seen as increase in background 

noise from attenuators 

“all absorbers are emitters”

• Total attenuation can be calculated and split into 

radome and storms.

• Radome corrections affect the whole radar scan –

more effect seen into the wind

• Storm attenuation affects only some rays.

• Use dual polarisation to correct attenuation 

constrained by the emission derived total

radome

site rain

15:00

5mm/hr

06:00

Radome monitoring operational at Met Office 

since Sept 2015

Storm attenuation operational at Met Office 

since Nov 2016

More details in Dance et al (2019)

storm

Rob Thompson, Anthony Illingworth



New observing types
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• Geostationary hyperspectral infrared sounders

• GIIRS now operational aboard China’s FY-4A

• IRS on EUMETSAT MTG-S expected late 2023

• Drones

• Phased array weather radar

• 100 elevations in 10-30s

Images from EUMETSAT

Images from MRI-JMA

NASA



Commercial weather observations
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• Cube-sat weather

Commercialization danger? 

• Already seeing data licensing problems with commercialization of GNSS 

satellite data 

• Need to ensure weather observations (paid for only once) are made available 

for research, forecasting and the public good

Microwave radiometer 
cube-sat 
MIT Lincoln Labs



Emerging Observations (e.g., many more)

High density near surface observations

• Citizen networks, Crowdsourced data

• Private weather stations  

• Vehicles

• Smartphones…. (Hintz et al, 2019)

Potential issues

• QC and provenance

• Privacy

• Data ownership

• Data volumes
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https://weathermap.netatmo.com/

Bell et al 2020 – Temperatures from Private Cars
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Conclusions
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• Reviewed issues in convection-permitting data assimilation 

• Focussed on multi-scaling – using observation error correlations to allow  

denser observations and more detail at fine scales

• Future systems

• How can we measure observation impact to ensure that we get the most out of 

existing and future observations? 
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