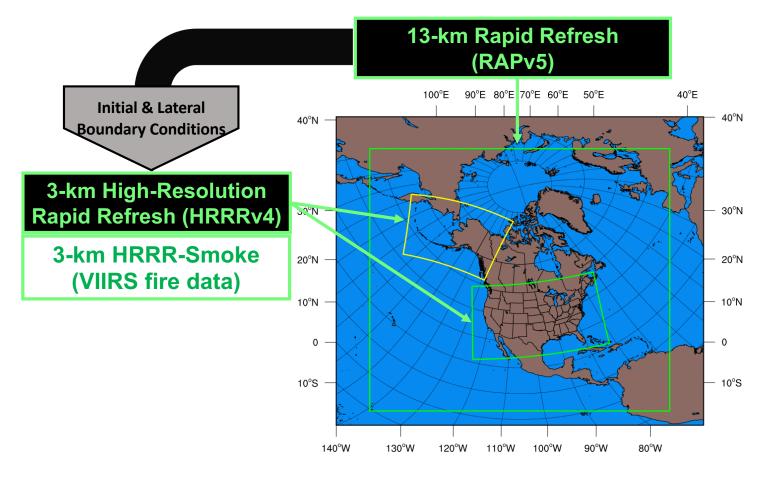
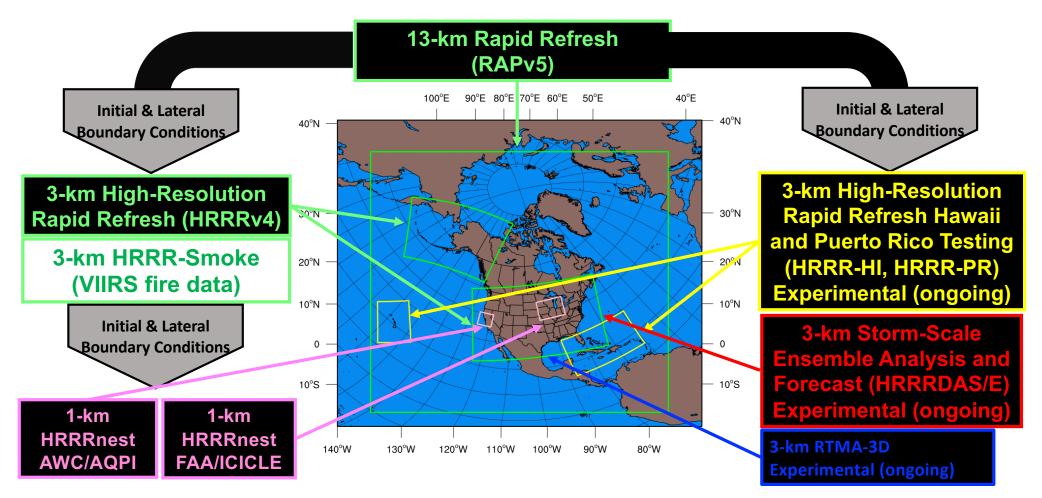


The High-Resolution Rapid Refresh (HRRR) Numerical Weather Prediction Model

Dave Turner


Manager, Atmospheric Science for Renewable Energy (ASRE) Program Chief, Verification and Assessment Branch

5 December 2020


Curtis Alexander, David Dowell, Trevor Alcott, Isidora Jankov, Stan Benjamin, Steve Weygandt, Terra Ladwig, Ming Hu, Jeff Duda, Tanya Smirnova, Joseph Olson, Jaymes Kenyon, Georg Grell, Eric James, Haidao Lin, and John Brown

NOAA/ESRL/GLOBAL SYSTEMS LABORATORY

RAP/HRRR Model Forecast Suite

RAP/HRRR Model Forecast Suite

RAP/HRRR Observations Assimilated

	Hourly Observation Type	Variables Observed	Obs Count / Hour				
	Rawinsonde	Temperature, Humidity, Wind, Pressure	120 (most @00z/12z)				
Profile	Profiler – 915 MHz	Wind, Virtual Temperature	20-30				
Γ	Radar – VAD	Wind	125				
	Radar	Radial Velocity	125 radars				
"Radar	r" Radar reflectivity – CONUS	3-d refl ➔Rain, Snow, Graupel	1,500,000				
	Lightning	(proxy reflectivity)	NLDN				
A : no no f	Aircraft (AMDAR, TAMDAR)	Wind, Temperature	2,000 -26,000				
Aircraf	Aircraft – WVSS, TAMDAR	Humidity	100 - 3500				
	Surface/METAR	Temperature, Moisture, Wind, Pressure, Clouds, Visibility, Weather	2800 - 3200				
Surfac	e Surface/Mesonet	Temperature, Moisture, Wind	~12K (~10K monitored)				
	Buoys/ships	Wind, Pressure	200 – 400 (every 3h)				
Γ	GOES AMVs (atmos motion vectors)	Wind	2000 - 4000				
	AMSU/HIRS/MHS/ATMS/CrIS (RARS)	Radiances	1K-10K				
Satellit	te GOES	Radiances	large				
	GOES cloud-top press/temp	Cloud Top Height	100,000				
Γ	GPS – Precipitable water	Humidity	350-400				
	WindSat Scatterometer	Winds	2,000 – 10,000				

RAP/HRRR Implementation History

Operational Implementations

 <u>01 May 2012</u> ➢ RAPv1: Adoption of GSI, WRF-ARW and unified post ➢ Enabled use of community-developed software 	 25 Feb 2014 ➢ RAPv2: Hybrid EnKF-3DVar data assimilation ➢ Significant improvement in upper-air forecasts
 <u>30 Sep 2014</u> HRRRv1: 3-km Radar DA in WRF-ARW Significant improvement in convective forecasts 	 23 Aug 2016 ➢ RAPv3/HRRRv2: Aerosol Thompson MP, improvements to MYNN PBL, RUC LSM, RRTMG Rad, Grell-Freitas cumulus ➢ Significant improvement in surface forecasts
 <u>12 Jul 2018</u> RAPv4/HRRRv3: Hybrid Vertical Coordinate, Eddy Diffusivity Mass Flux PBL Reduction in short-lead biases and improved mesoscale environment Extended forecast lengths to 39/36 hrs HRRR-Alaska 	 Mar/Apr 2020 ➢ RAPv5/HRRRv4: Storm-scale ensemble DA, Wildfire Smoke Prediction, Great Lakes Ice ➢ Reduction in longer-lead biases ➢ Extended forecast lengths to 51/48 hrs

HRRRv3 Shortcomings

How to address:

- Doesn't cover Day-Ahead

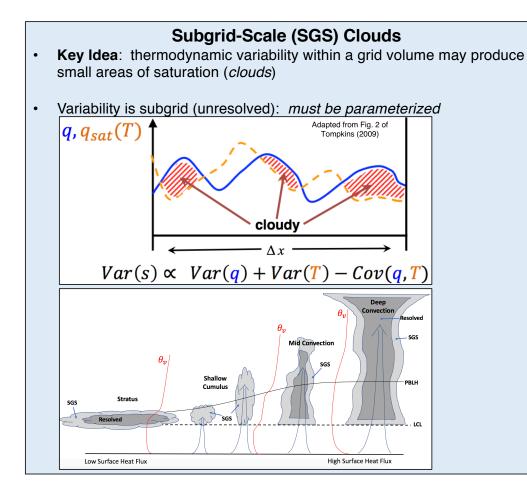
- 36h forecasts every 6h HRRRv3 (July 2018), extension from previous 18 h
- 48h forecasts every 6h in HRRRv4 (upcoming @NCEP)

- Problems with 2-6h conv storm prediction

- More accurate storms w/3km ens data assimilation (HRRRv4)

- Daytime warm bias, excessive low-cloud erosion, diurnal cycle

- breakthrough far better subgrid-scale cloud in HRRRv4/RAPv5
- Guidance on smoke?


- smoke forecasts added- improved aerosols (HRRRv4 / RAPv5)

<u>Gap</u>

2020 RAPv5/HRRRv4 Primary Changes

Model	Data Assimilation	Land-surface / post
WRF-ARWv3.9+ incl. phys changes <u>Physics changes:</u> MYNN PBL update – better sub-grid clouds, improved EDMF mixing - remove limit for subgrid qc/qi - decrease subgrid qc/qi radii RRTMG modifications for subgrid clouds Aerosols sources/sinks – fire/smoke, dust - Add smoke with VIIRS FRP Improved land-surface/snow model including better 2m T/Td diagnostics Latest Grell-Freitas conv (RAP only) Lake model for small lakes Enhanced gravity-wave drag <u>Numerics changes:</u> Reduced 6 th order diffusion inc. hydrom Removal of mp_tend_lim Implicit-explicit vertical advection	Merge with GSI trunk – 2019 <u>New Observations for assimilation:</u> GOES-16 radiances, CrIS/ATMS TC vitals for trop cyclone location/ strength Aircraft/raob moisture obs for p<300 hPa VIIRS/MODIS fire radiative power <u>Assimilation Methods:</u> HRRR - 3km ensemble DA (36 mems out to 1h) – HRRRDAS mean for HRRR IC and BEC	Switch to MODIS albedo (higher), replace 1-deg albedo.Add zenith-ang albedo adj15" resolution land use dataFractional sea/lake ice concentrationFVCOM data for Great Lakes lake temp/ice concentrationVIIRS/MODIS/GOES fire radiative powerHAILCAST diagnostic

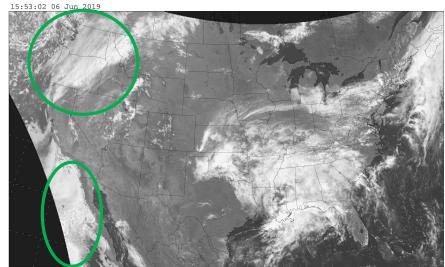
Improved Subgrid-Scale Cloud Representation

Key Changes for RAPv5 / HRRRv4:

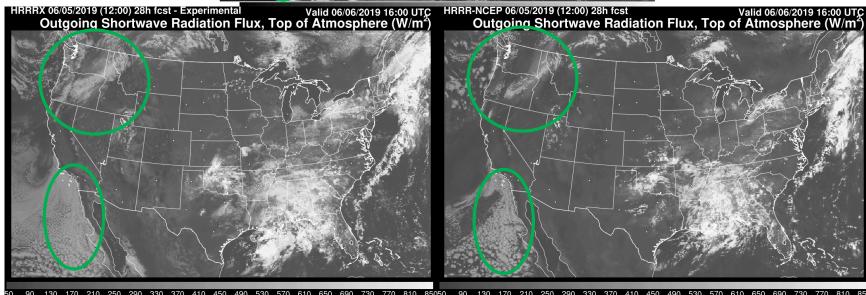
- Mixing ratio (*q*_{cldwat} and *q*_{cldice}) of SGS clouds:
 - Removed constraints on q_x for stratiform SGS
 - Increased coverage of convective SGS via MYNN mass-flux approach
- Cloud fraction:
 - Stratiform: slightly reduced, except in high grid-scale RH
 - Use a modified Chaboreau and Bechtold (2002, 2005) scheme exclusively; discontinue use of Xu and Randall (1996)
- Effective radii (*r*_e) of SGS clouds:
 - Water: use Turner et al. (2007)
 - o Ice: use Mishra et al. (2014)

Improved Subgrid-Scale Cloud Representation

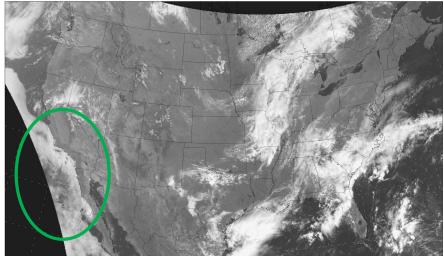
8/29/18 subgrid-cloud change


Surface Radiation : TimeSeries 01/19/2017 9:00 - 04/15/2020 9:00 : no diffs MATCHED Close All Preview Windows

Curve0 mean = 61.82, median = 61.52, stdev = 23.19 Curve1 mean = 42.53, median = 38.57, stdev = 25.88


GOES-16 combined (ch1, 2, 3) visible albedo

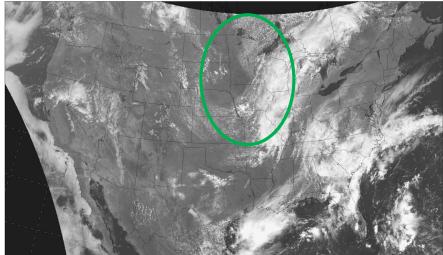
Comparison of SW-up at top of atmosphere


16 UTC 06 June 2019

Initialized 12 UTC 05 June Fcst hr 28:

GOES-16 combined (ch1, 2, 3) visible albedo

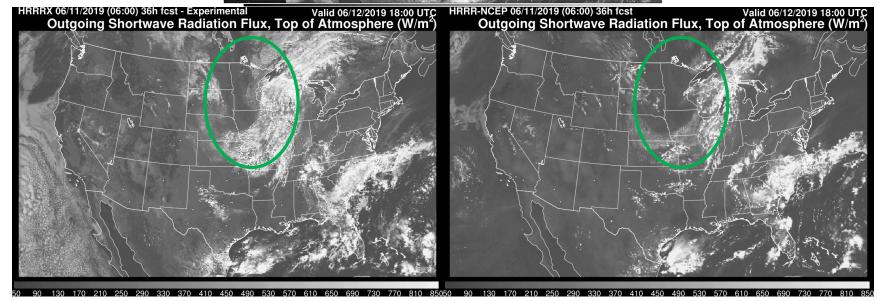
16:03:06 12 Jun 2019

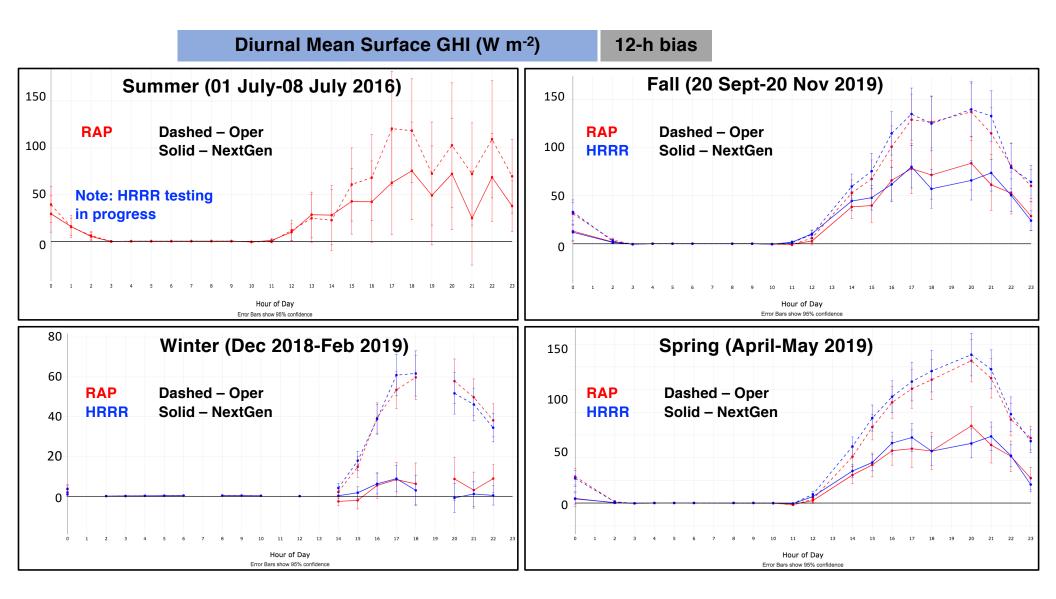

Comparison of SW-up at top of atmosphere

16 UTC 12 June 2019

Initialized 06 UTC 11 June Fcst hr 34:

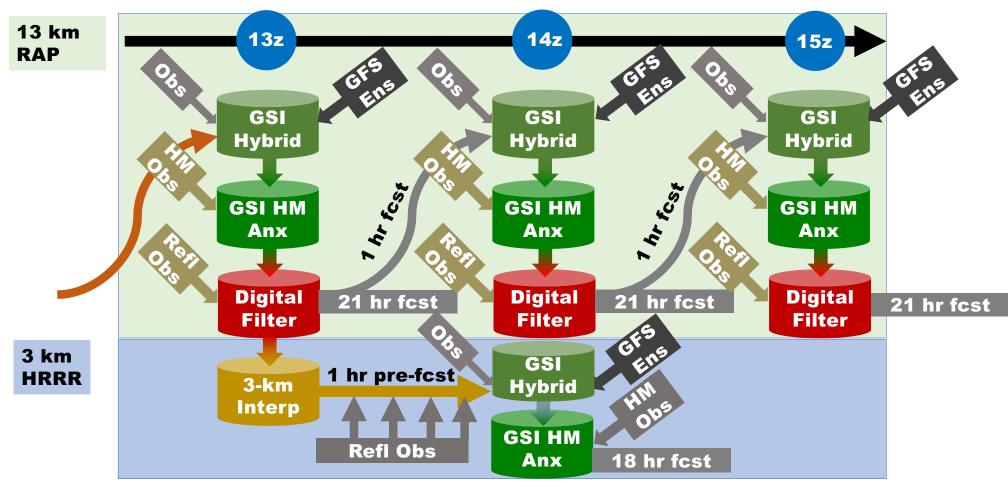
HRRR VG6/11/2019 (06:00) 34h fcst - Experimental Valid 06/12/2019 16:00 UTC Outgoing Shortwave Radiation Flux, Top of Atmosphere (W/m) GOES-16 combined (ch1, 2, 3) visible albedo


18:03:06 12 Jun 2019



Comparison of SW-up at top of atmosphere

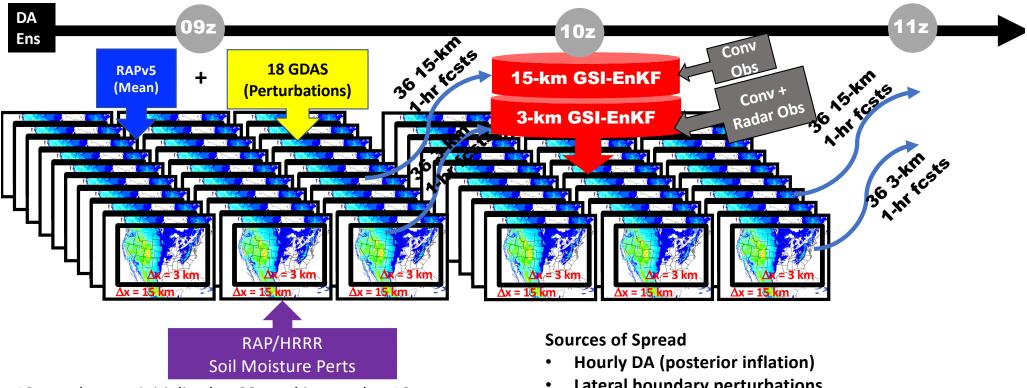
18 UTC 12 June 2019


Initialized 06 UTC 11 June Fcst hr 36:

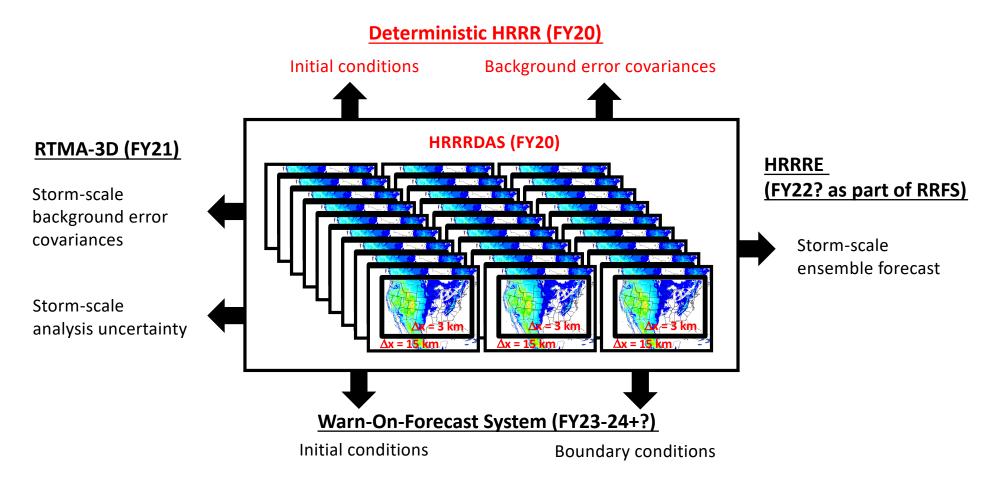
Changes to MYNN-EDMF to combat cold bias

(All changed made for both RAP and HRRR)	Approximate contribution to warming 12 hr fcst:
 Mixing length: Increased the turbulent mixing 	~ +0.1 to +0.2 C (daytime only)
 Added TKE cycling: No longer re-spinning up the TKE every hour 	~ +0.1 C (in 0-3 hr fcst)
 Added dissipative heating (similar to Han and Bretherton 2019): 	~ +0.1 C
 Added buoyancy flux functions (Bechtold and Siebesma 1998): 	~+0.1 to +0.2 C (mostly over water)
 Surface layer scheme: Switched to exact calculation of z/L (from diagnostic mapping of Ri_b → z/L) Increased C_{zil} from 0.075 to 0.085 	~ +0.1 to +0.2 C (daytime only)

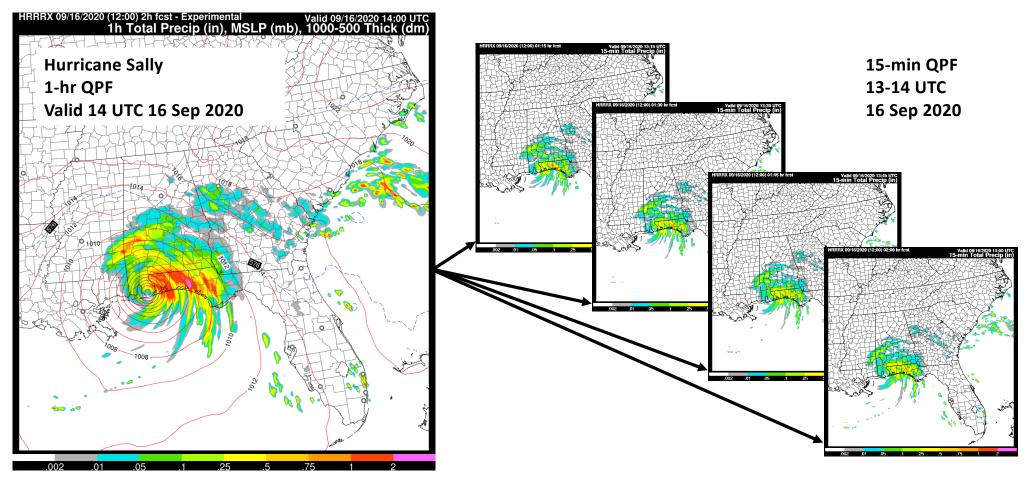
HRRRv3 Initialization from RAPv4


15

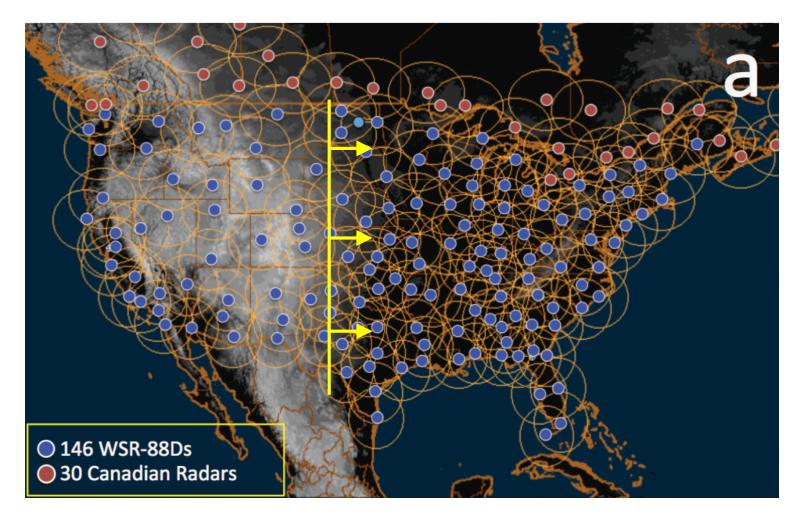
HRRRv4 Initialization from **HRRRDAS**

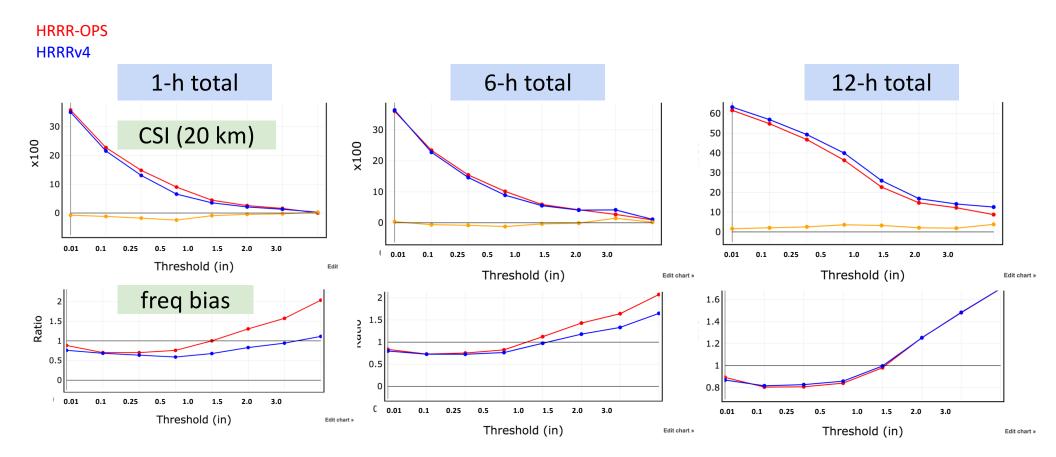

16

HRRR Data Assimilation System (HRRRDAS)

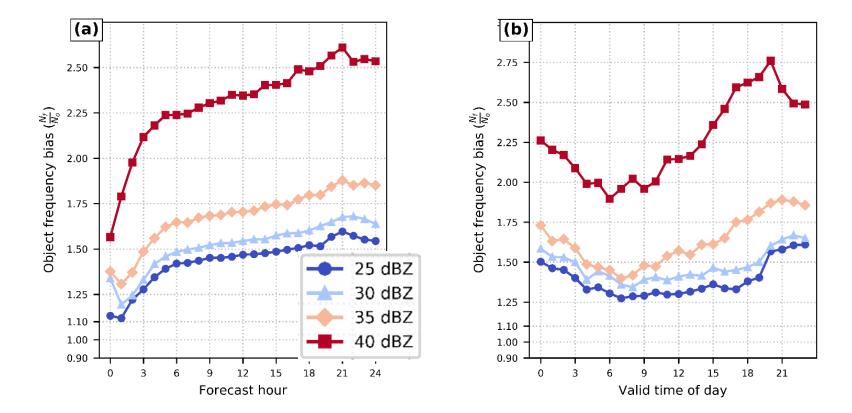


18 members re-initialized at 09z and inserted at 10z 18 members re-initialized at 21z and inserted at 22z Lateral boundary perturbations


HRRRDAS Foundation for Future Implementations

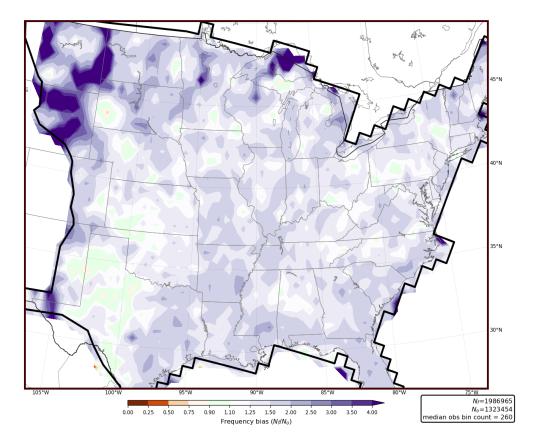

HRRRv4 QPF Output

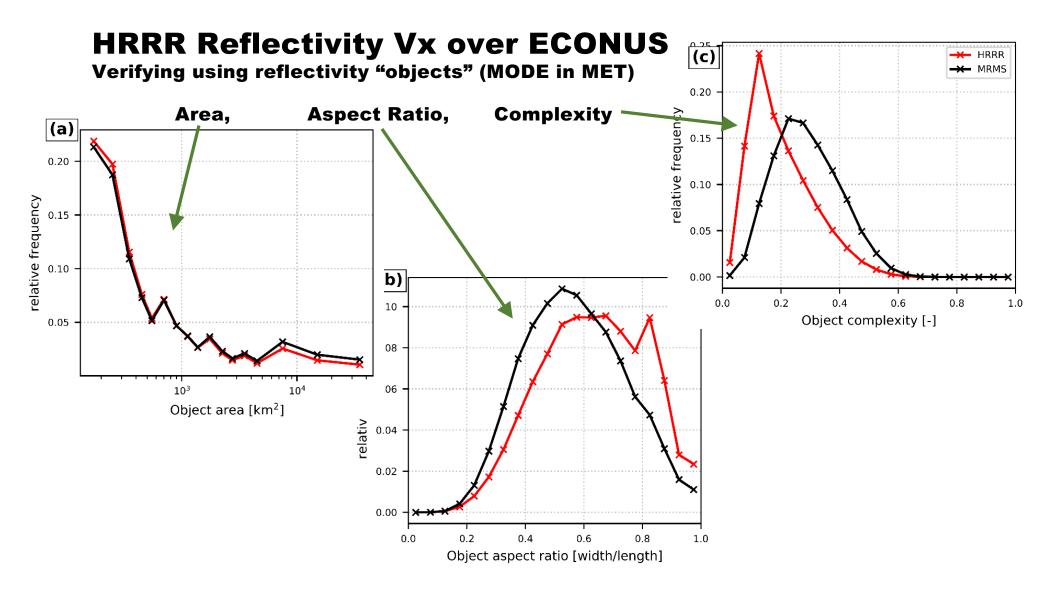
Multi-Radar, Multi-Sensor (MRMS) Radar Mosaic


HRRR QPF Verification ECONUS May 2019 Grid-to-Grid Comparison with Stage-IV Precip Product

HRRR Reflectivity Verification ECONUS

Verifying using reflectivity "objects" (MODE in MET)

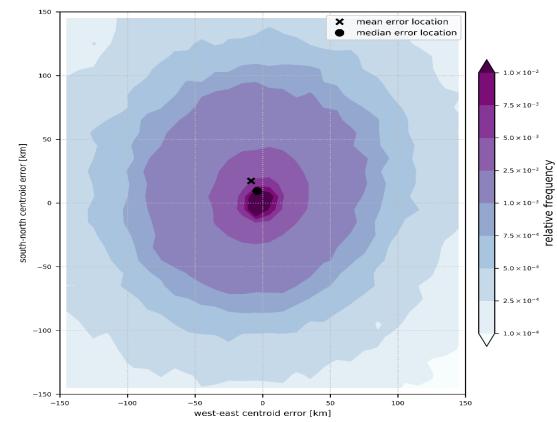

Object Frequency Bias



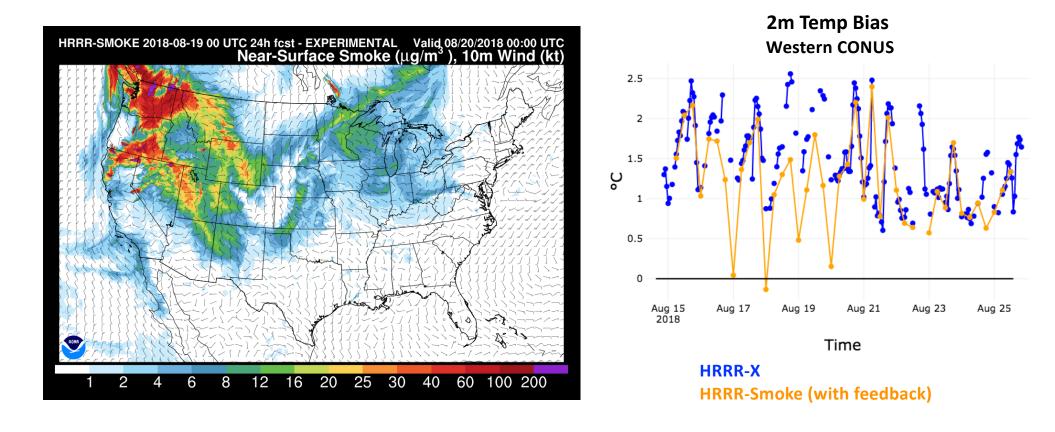
HRRR Reflectivity Verification ECONUS

Verifying using reflectivity "objects" (MODE in MET)

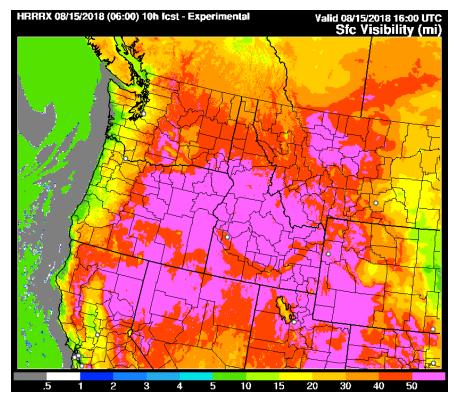
Spatial Distribution of Object Frequency Bias when object reflectivity > 30 dBZ



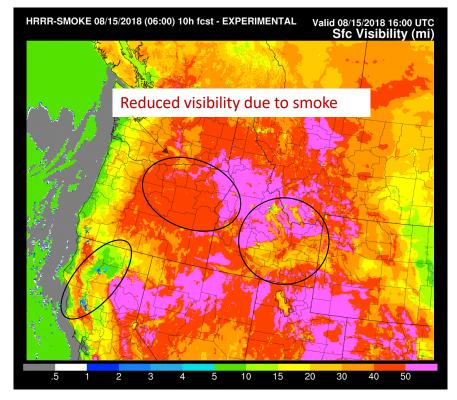
HRRR Reflectivity Verification ECONUS


Verifying using reflectivity "objects" (MODE in MET)

Displacement errors for object reflectivity > 40 dBZ

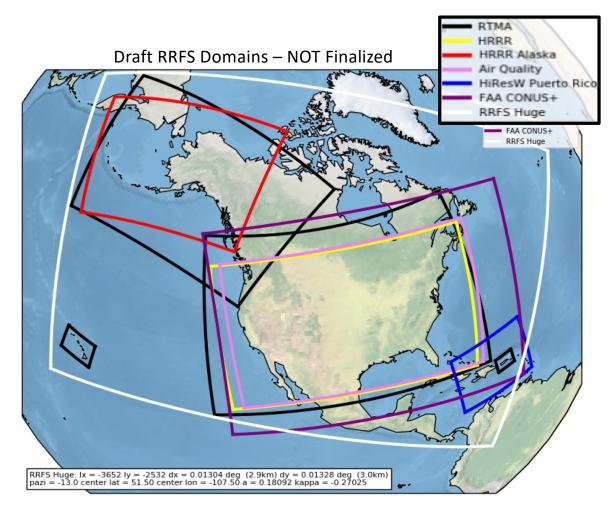

Probability density function of two-dimensional centroid displacement error at 40 dBZ aggregated over all forecast hours

RAP/HRRR Smoke Capability



RAP/HRRR Smoke Capability

Surface visibility forecasts for 15 Aug 2018


Numerical Weather Prediction system w/o smoke (HRRR)

NWP model with smoke (HRRR-Smoke)

RRFS Development

- NOAA is moving towards a Unified Forecast System (UFS) for weather prediction at all scales
 - Global Forecast System
 - Rapid Refresh Forecast System (RRFS)
- Same dynamic core, same physics schemes, same DA method for both
- GFS already part of UFS (summer 2019), and RRFS should be operational by 2023
 - New dynamic core (FV3) being tested at storm-scale resolution
- Codes available to community

FV3-CAM Timeline \rightarrow Rapid Refresh Forecast System

NPS Modeling	Current	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	UFS
System	Version	FY 20	FY 20	FY 20	FY 20	FY 21	FY 21	FY 21	FY 21	FY 22	FY 22	FY 22	FY 22	FY 23	FY 23	FY 23	FY 23	FY 24	FY 24	FY 24	FY 24	Application
Global Weather &	GFS/						050.40															
Global Analysis Global Waves	GDASv15 GWMv3						GFSv16															
Global Waves Global Weather	GVVIVIV3				_																	
Ensembles	GEFSv11																					UFS Medium Range & Sub-
Global Wave Ensembles	GWESv3				GEF Sv12														GF Sv17/			Seasonal
Global Aerosols	NGAC v2																		GEF Sv13			
Short-Range Regional Ensembles	SREFv7																					
Global Ocean & Sea-Ice						RTOF Sv2								RTOF Sv3								UFS Marine & Cryosphere
Global Ocean Analysis	GODASv2													GODA Sv3								styosphere
Seasonal Climate	CDAS/ CFSv2														-						SFSv1	UFS Seasonal
Regional Hurricane 1	HWRFv12			HWRFv13	1																	
Regional Hurricane 2	HMONv2			HMONv3								HAF Sv1				HAFSv2				HAFSv3		UFS Hurricane
Regional High	HiRes																					
Resolution CAM 1	Window v7																					
Regional High	NAM nests/																					
Resolution CAM 3	Fire Wxv4				_																	
Regional High Resolution CAM 4	RAPv4/ HRRRv3			RAPv5/ HRRRv4											RRF Sv1				RRF Sv2			UFS Short-Range
Regional HiRes CAM Ensemble	HREFv2				HREFv3														1111 572			Regional HiRes CAM & Regional
Regional Mesoscale Weather	NAMv4																					Air Quality
Regional Air Quality	CMAQv5											CMAQv6										
Regional Surface Weather Analysis	RTMA/ URMA v2.7			RTMA/ URMA v2.8	3											3DRTMA/ URMAv3						
Atmospheric Transport & Dispersion	HySPLITv7											HySPLIT v8								HySPLIT v9		UFS Air Quality & Dispersion
Coastal & Regional Waves	NWPSv1.2			NWPS v1.3								NWPS v1.4						RWPSv1				UFS Coastal
Great Lakes	GLWUv3.4						_					GLWUv4								GLWUv5		UFS Lakes
Regional Hydrology	NWMv2					NWMv3										NWMv4						UFS Hydrology
Space Weather 1	WAM/IPEv1																					UFS Space
Space Weather 2	ENLILv1																				WAMv2	Weather

Summary

- RAP / HRRR is a significant part of the operational NWP suite
- RAPv5 / HRRRv4 in process of being released to operations
 - Updated physics (esp wrt subgrid-scale clouds)
 - Updated to storm-scale DA
 - Implementation in December 2020
- NWS / NOAA moving towards a unified forecasting system
 - Simplify the operational NWP modeling suite
 - Want to make this more of a community resource (EPIC)
 - Global forecast system already using this new dycore (FV3) with original GFS physics
 - Are moving current RAP/HRRR physics into new dycore for storm-scale NWP
 - Ultimately UFS will have single physics package for all scales
 - New DA system to replace GSI (JEDI)
- New customers for the HRRR
 - Traditional customers are convective weather community and aviation
 - New ones are hydrometeorology and renewable energy