

Missions to Mars

Mission	Country	Launch	Results
Marsnik-1	USSR	10/10/1960	Exploded before reach terrestrial orbit
Marsnik-2	USSR	10/14/1960	Exploded before reach terrestrial orbit
Sputnik 29	USSR	10/24/1962	Exploded in terrestrial ort
Mars 1	USSR	11/01/1962	Passed by Mars 200,000
Sputnik 31	USSR	11/04/1962	Failure in terrestrial orbit
Zond 1	USSR	06/04/1964	Failure before reach terre orbit
Mariner 3	USA	11/05/1964	Entered in Sun orbit
Mariner 4	USA	11/28/1964	First Mars photos (21)
Zond 2	USSR	11/30/1964	Communications failure
Zond 3	USSR	07/18/1965	Destroyed in terrestrial or
Mariner 6	USA	02/24/1969	Photograhies. Passed by 3,215 Km.
Mariner 7	USA	03/27/1969	Photograhies. Passed by 3,516 Km.
Mars 1969 A	USSR	03/27/1969	Launch failure
Mars 1969 B	USSR	04/02/1969	Launch failure
Mariner 8	USA	05/08/1971	Launch failure
Cosmos 419	USSR	05/10/1971	Launch failure
Mars 2	USSR	05/19/1971	Second artificial satellite Mars. Surface module destroyed
Mars 3	USSR	05/28/1971	Third artificial satellite of I Surface module sent sign 20 seconds

Mission	Country	Launch	Results
Mariner 9	USA	05/30/1971	First artificial satellite of M (7,329 Photos)
Mars 4	USSR	07/21/1973	Passed by Mars 9846 Km.
Mars 5	USSR	07/25/1973	Operative 9 days in Martian orbit (60 Photos)
Mars 6	USSR	08/05/1973	Surface module sent data during the descent but crash
Mars 7	USSR	08/09/1973	Surface module passed by Mars 1,500 Km.
Viking 1	USA	08/20/1975	First surface data. Operati during several years
Viking 2	USA	09/09/1975	Second successful module. Operative during several yes
Phobos 1	USSR	07/07/1988	Communications failure approaching Mars
Phobos 2	USSR	07/12/1988	Contact lost during obtaining Phobos photos
Mars Observer	USA	09/25/1992	Contact lost approaching Ma
Mars Global Surveyor	USA	11/07/1996	Operative until November 20
Mars-96	Russia	11/16/1996	Failure leaving terrestrial orb
Mars Pathfinder	USA	12/04/1996	First robotic vehicle. More than 160,000 photos
Nozomi	Japan	07/04/1998	Failure before entering in Martian orbit
Mars Climate Orbiter	USA	12/11/1998	Lost before entering in Marti orbit (1999 September 23th)
Mars Polar Lander	USA	01/03/1999	Lost landing

NASA ٢ Nebula: NASA's Private Cloud (2008) Emerged at NASA Ames Research Center and now supported by staff and infrastructure at Ames and at NASA Goddard Space Flight Center $% \left({{\rm S}_{\rm A}} \right)$ dsa-research.org "Computing Container as a Service" Open-source cloud computing project and service developed to provide an alternative to the costly construction of additional data centers whenever NASA Scientist or engineers require additional data processing. Each shipping container data center can hold up to 15,000 CPU cores or 15 petabytes of storage while proving 50% more energy efficient than traditional data centers. Virtualization technologies XEN and KVM hypervisors · Eucalyptus and then OpenStack virtual infrastructure manager NEBULA ø R March 2005 May Julv 0 -0--0--0 Rackspace Decides to Open Source Cloud Software Inaugural Des Summit in Aut NASA Open Sources Nebula Platform OpenStack formed with contributions from Rackspace &

APub		xamp	ie: A	mazon			
	Machine Type	Cores	C.U.	Memory	Storage	Platform	
		Standar	d On-De	emand Insta	ices		
	Small (Default)	1	1	1.7GB	160GB	32bit	
	Large	2	2	7.5GB	850GB	64bit	
	Extra Large	4	2	15GB	1,690GB	64bit	
		High CI	PU On-D	emand Insta	inces		
	Medium	2	2.5	1.7GB	350GB	32bit	
	Extra Large	8	2.5	7GB	1,690GB	64bit	
				Machi Stanc	ne Type lard On-D	Price in emand Ins	1 USA tances
	amazon webservices™			Small	Small (Default) \$0		0/hour
				Large	Large		0/hour
. 🔰				Extra	Extra Large \$0.80		0/hour
				High	High CPU On-Demand Instance		
	Execut	ion		Mediu	m	\$0.2	0/hour
B/				Π.	I	¢0.9	0.0

	Mars MetNet: Phobos						
	More in detail						
	Possible solution: 37 HighCPU Medium Machines (1h ~ \$7.50)						
org	What is the price of a similar cluster for the chosen solution?						
Ļ.	Example:						
arc	HP ProLiant DL170h G6 Server - \$4,909 x 37 nodes = \$181,633						
I-rese							
lsc	What about administration? Electricity? Physical Security?						
.0	How many times will it be used at full power? Amortization?						

	WSN	l on	Cloud	1					
D	Execution model (small example) Optimal number of nodes per instance (by means of performance) Deadline: 1 hour 								
ō		Te	st Scenario	Instance	Nodes	Execution Time (min)	Economic Cost (U\$S)		
<u> </u>			Ι	t1.micro	78	59.806	0.020		
0			п	m1.small	324	59.937	0.047		
			ш	m1.large	841	59,980	0.190		
× I			IV	m1.xlarge	632	59.952	0.379		
S.			V	c3.xlarge	722	59.912	0.239		
a-re	Remember: <u>160.704 ha</u> of vineyards!								
.	Short term improvements								
0	Model considering multiple instances								
C	Performance cost and cost/performance								
-ix									
SPA	Placement based on WSN resolution								
Ò 🔪	100 nodes/ha, 10 nodes/ha Lacono, J.L. Vazquez-Poletti, C. Garcia Carino and Ignacio M. Liorente: A Model to Calculate Amazon EC2 Instance Performance in Forst Prediction Applications, 114 HPCLATAM-CLCAR Joint Conference (CARL2014) Valpanaiso (Chille), October 2014. Proceedings published in the series Communications in Computer and Information Science (Chille) (Childer on 6 Bio. 2014). Exclusion								
3									

