

Linux containers and Docker
Elvin Sindrilaru
IT Data and Storage Services Group - CERN

GridKa School 2015

Outline
• Understanding Linux containers

• Linux namespaces
• Linux cgroups

• Docker containers

• Containers orchestration

• Security considerations

• Benefits

09/09/2015 Linux containers and Docker 3

What is a container?

09/09/2015 Linux containers and Docker 4

"Cmglee Container City 2" by Cmglee - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

Linux containers

• Based on two technologies

• Linux namespaces

• Linux control groups (cgroups)

09/09/2015 5 Linux containers and Docker

Linux namespaces (1)

• The purpose of a namespace is to wrap a particular
global system resource in an abstraction that makes
it appear to the process within the namespace that they
have their own isolated instance of the global
resource.

09/09/2015 6 Linux containers and Docker

Linux namespaces (2)
• Currently there are 6 namespaces implemented in the Linux

Kernel:

• Mount namespaces – isolate the set of file-system mount points

seen by a group of processes (Linux 2.6.19)

• UTS namespaces – isolate two system identifiers – nodename
and domainname. (UNIX Time-sharing System)

• IPC namespaces – isolate inter-process communication
resources e.g. POSIX message queues

 09/09/2015 7 Linux containers and Docker

Linux namespaces (3)
• Network namespaces – provides isolation of system resources

associated with networking. Each network namespace has its
own network devices, IP addresses, port numbers etc.

• PID namespaces – isolate process ID number space. Processes
in different PID namespaces can have the same PID number.

• User namespace – isolates the process user and group ID
number spaces. A process’s UID and GID can be different inside
and outside a user namespace i.e a process can have full root
privileges inside a user namespace, but is unprivileged for
operations outside the namespace. (Linux 3.8)

 09/09/2015 8 Linux containers and Docker

Linux cgroups (1)
• Cgroups allow allocating resources to user-defined groups of

processes running on the system
• Cgroup subsystems (resources controllers) = kernel modules

aware of cgroups which allocate varying levels of system resources
to cgroups

• Everything is exposed through a virtual filesystem:
• /cgroups, /sys/fs/cgroup … - mountpoint may vary

• Currently up to 10 subsystems:
• blkio – set limits on input/output access to/from block devices such as

physical drives
• cpuset – assign individual CPUs and memory nodes to tasks in a cgroup
• memory – set limits on memory used by tasks in a cgroup
• etc …

09/09/2015 9 Linux containers and Docker

Linux cgroups (2)
• libcgroup package provides command line utilities for

manipulating cgroups.

• lssubsys – list available subsystems

• lscgroup – list defined cgroups

• cgget – get parameters of cgroup

• cset – set parameters of cgroup

• cgexec – start a process in a particular cgroup

• cgclassify – move running task to one or more
cgroups

09/09/2015 10 Linux containers and Docker

Linux containers a.k.a LXC
• Containers

• tool for lightweight virtualization
• provides a group of processes the illusion that they are

the only processes on the system

• Advantages in comparison to traditional VM:

• Fast to deploy - seconds
• Small memory footprint - MBs
• Complete isolation without a hypervisor

 Namespaces + Cgroups => Linux containers

09/09/2015 11 Linux containers and Docker

Linux containers – CLI
• lxc package contains tools to manipulate containers

• lxc-create

• Setup a container (rootfs and configuration)
• lxc-start

• Boot a container
• lxc-console

• Attach a console if started in background
• lxc-attach

• Start a process inside a container
• lxc-stop

• Shutdown a container
• lxc-destroy

• Destroy the container created with lxc-create

09/09/2015 12 Linux containers and Docker

Docker containers
• “A container is a basic tool, consisting of any device

creating a partially or fully enclosed space that can be
used to contain, store and transport objects or materials.”
 http://en.wikipedia.org/wiki/Container

• “Open-source project to easily create light-weight,
portable, self-sufficient containers from any application”

 https://www.docker.com/whatisdocker/

• Docker motto: “Build, Ship and Run Any App, Anywhere”

09/09/2015 13 Linux containers and Docker

http://en.wikipedia.org/wiki/Container
https://www.docker.com/whatisdocker/

Docker interaction

• Client-server model
• Docker daemon

• Process that manages the containers
• Creates files systems, assigns IP addresses,

routes packages, manages processes
 => needs root privileges

• RESTful API

• Docker client
• Same binary as the daemon
• Makes GET and POST request to the daemon

09/09/2015 14 Linux containers and Docker

Docker client-server interaction

09/09/2015 15

• The client can run on the same host or on a different one
from the daemon

Linux containers and Docker

VMs vs. Docker containers

• VMs are fully virtualized
• Containers are optimized for single applications,

but can also run a full system

09/09/2015 16 Linux containers and Docker

Docker filesystem
• Typical Linux system needs two filesystems:

• Boot file system (bootfs)
• Root file system (rootfs) - /dev, /etc, /bin, /lib …

 © Docker Inc.

• Docker can use Another Unionfs (AUFS) which is copy-on-write
• AUFS

• Helps sharing common portions of the fs among containers
• Layers are read-only and the merger of these layers is visible to the processes
• Any changes go into the rd/wr layer

09/09/2015 17 Linux containers and Docker

Docker Images
• Image

• Never changes
• Stack of read-only fs layers
• Changes go in the topmost © Docker Inc.

 writable layer created when the container starts
• Changes are discarded by default when the container is

destroyed

• Where to get Docker Images from?
• https://registry.hub.docker.com/
• Similar to what GitHub is for Git - think “git repository for

images”
• Use your own private registry e.g. pull the docker registry

image and run it in a container

09/09/2015 18 Linux containers and Docker

https://registry.hub.docker.com/

Docker Containers
• Container

• Read-write layer
• Information about Parent Image (RO layers)
• Unique id + network configuration + resource limits

• Containers have state: running / exited
• Exited container

• preserves file system state
• does NOT preserve memory state

• Containers can be promoted to an Image by using “docker

commit”
 Takes a snapshot of the whole filesystem (RW+RO)

09/09/2015 19 Linux containers and Docker

Docker paradigm shift
• Motto: “write-once-run-anywhere”

• Developers:

• Concentrate on building applications
• Run them inside containers
• Avoid the all too common: “But it works fine on my machine …” 

• Sysadmins/operations/DevOps:

• Keep containers running in production
• No more “dependency hell” … almost … at least not traditional ones 

⇒ Clean separation of roles
⇒ Single underlying tool which (hopefully) simplifies:

⇒ code management
⇒ deployment process

09/09/2015 20 Linux containers and Docker

Docker workflow automation
• Dockerfile

• Repeatable method to build Docker images – makefile equivalent

• DSL(Domain Specific Language) representing instructions on setting up
an image

• Used together with the context by the “docker build” command to create a
new image

09/09/2015 21

Use the fedora base image
FROM fedora:20
MAINTAINER Elvin Sindrilaru, esindril@cern.ch, CERN 2015

Add a file from the host to the container
ADD testfile.dat /tmp/testfile

Install some packages
RUN yum -y --nogpg install screen emacs

Command executed when container started
CMD /bin/bash

Linux containers and Docker

Containers orchestration

• Orchestration describes the automated

arrangement, coordination and management of
complex systems, middleware and services.

• Library dependencies “sort of” become
container dependencies

09/09/2015 22 Linux containers and Docker

Container data management

• Docker volume
• Directory separated from the container’s root filesystem
• Managed by the docker daemon and can be shared

among containers
• Changes to the volume are not captured by the image
• Used to mount a directory of the host system inside the

container

• Data-only containers
• Expose a volume to other data-accessing containers
• Prevents volumes from being destroyed if containers stop

or crash

09/09/2015 23 Linux containers and Docker

Port binding and linking containers

• Bind container ports to host ports using the “-p” flag
• Not all containers need to bind internal ports to host ports

• E.g. only front-end applications need to connect to backend services

• Linking within the same host
• Profit from the unified view that the docker daemon has over all

running containers
• Use the --link option: docker run --link CONTAINER_ID:ALIAS …
• Effectively alters the /etc/hosts file

• Cross host linking
• Requires a distributed, consistent discovery service
• Needs a distributed key-value store to keep info about running

containers e.g. etcd
• Application must be aware of the discovery service

09/09/2015 24 Linux containers and Docker

Orchestration tools/frameworks
• Docker Machine, Compose and Swarm

• Kubernetes
• https://github.com/GoogleCloudPlatform/kubernetes

• Shipyard
• https://github.com/shipyard/shipyard

• LXC/LXD/CGManage
• https://linuxcontainers.org/

09/09/2015 25 Linux containers and Docker

https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/shipyard/shipyard
https://linuxcontainers.org/

Security considerations
• Docker containers are started with a reduced capability

set which restricts:
• Mount/unmount devices
• Managing raw sockets
• Some fs operations

• Fine-grained control of capabilities using the docker --

cap-add --cap-drop options

• End-goal is to run even the Docker daemon as a non-root
user and delegate operations to dedicated subprocesses

• Keep the host Kernel updated with the latest security

patches

09/09/2015 26 Linux containers and Docker

Docker – Benefits
• Portable deployment across machines – overcomes machine specific

configuration issues

• Application-centric – optimized for deployment of applications and not
machines

• Automatic build – can use any configuration management system
(puppet, chef, ansible etc.) to automate the build of containers

• Versioning - git like capabilities to track container versions

• Component reuse – any container can become a base image

• Sharing – use the public registry to distribute container images, just like a
git repository

09/09/2015 27 Linux containers and Docker

	Slide Number 1
	Linux containers and Docker
	Outline
	What is a container?
	Linux containers
	Linux namespaces (1)
	Linux namespaces (2)
	Linux namespaces (3)
	Linux cgroups (1)
	Linux cgroups (2)
	Linux containers a.k.a LXC
	Linux containers – CLI
	Docker containers
	Docker interaction
	Docker client-server interaction
	VMs vs. Docker containers
	Docker filesystem
	Docker Images
	Docker Containers
	Docker paradigm shift
	Docker workflow automation
	Containers orchestration
	Container data management
	Port binding and linking containers
	Orchestration tools/frameworks
	Security considerations
	Docker – Benefits
	Slide Number 28

