
Concurrent
Programming in C++

Graeme Stewart and William Breaden-Madden

2015-09-06
1

Modern CPU Evolution
• Moore’s law continues for

now*
• So transistor density

doubles approximately
every 24 months

• This used to mean that
computers were about x2
faster every 2 years

• But not anymore - hardly
any increases now in clock
speed
• So little increase in

single threaded
performance

2

Moore's
Law

Clock
Speed

Charles Leggett, LBL

*With some signs of
slowing, however!

CPU Real Estate
• Increasing numbers of transistors are looking for

something useful to do:
• Vector registers
• Out of order execution
• Multiple Cores
• Hyperthreading

• However, although these things are good at increasing
the theoretical throughput of the CPU, exploiting these
techniques can be far from easy

3

Do we need to bother
with concurrency?

• For a lot of problems trivial parallelisation is sufficient to exploit multiple cores
• This can even be exploited via slots in a batch system and we don’t care what runs

where
• High energy physics has been able to adopt this technique for many years, very

successfully
• But sometimes this isn’t enough

• Overheads of trivial parallelisation can be non-trivial (file merging, message passing,
batch and grid workload managers)

• And are sysadmins really going to want to have 63 job slots on a Xeon Phi…?
Unlikely.

• Memory consumption can be considerable
• May not make best use of hardware

• Cores might go idle, because we run out of memory before we run out of cores
(lightweight cores, many core machines)

4

Types of Parallelism
• Data Parallelism

• When we do the
same thing to many
independent data
objects

5

• Task Parallelism
• When we use the

same data as input
to various different
tasks

• Mixed Parallelism
• But often we should mix and match these

approaches to get the best results

Going Parallel
• Programming in parallel requires thinking about a problem to identify

the best way forward
• Decomposition - how can I break the task down?
• Scaling - will things work as the task or the resource gets bigger?
• Patterns - does this task fit a model other people solved already?
• Correctness - am I getting the right answer, or just a faster wrong

one?
• As you discover more about parallelism you’ll develop better

intuition about how to approach all of these questions
• Adding parallelism is a fundamental design choice - you are

choosing a different path from a serial code design

6

The parallel punch-up:
Ahmdal vs. Gustavson
• Just about the first thing everyone learns about

parallelism is Ahmdal’s Law
• The observation that as the parallel portion of an

applications run time goes down with increasing
concurrency, the total run time becomes dominated by
the serial portion

• t = s + p/n
• As n→∞, t→s

• So, for a fixed problem size, serial overheads may kill
your ability to exploit parallelism

7

The parallel punch-up:
Ahmdal vs. Gustavson
• However, Gustavson observed that this is only true for

a fixed problem size
• If you can scale up the problem, as your parallel

resources increase, then your scaling will be
maintained
• t=s+p/n
• As n↑ try to increase p as well

• i.e., Scale the problem to the number of processors,
don’t fix it in size

8

What we look at today

• Today’s tutorial is divided into two parts
• Multi-threading in C++
• Intel Threaded Building Blocks

9

C++ Threads
• With C++11, language support was added for concurrency

• This was a great step forwards, as it properly defined the
behaviour of C++ in concurrent environment
• e.g., the C++ memory model

• Although support might be considered quite basic (compared to
other toolkits), it’s a great step forwards from the low level
threading libraries used before, like pthreads

• As this is language support, it’s not going away and will probably
improve

• Using C++ threads is a good way to learn some of the basic
advantages and problems that come up when programming
concurrently

10

What we do with C++
Threads today

• How to spawn threads, wait or detach them and identify them
• Passing arguments to the thread’s invocation function and

what can go wrong when we try to do that
• What can happen if threads access data at the same time:

data races
• How to protect against this using a mutex and how to avoid

deadlock
• Avoiding locks with atomic variables
• How to launch from asynchronous functions and read their

return values from a future

11

Intel Threaded Building
Blocks

• High level toolkit for managing concurrency in C++
• Not oriented at threads at all, but at parallel tasks

• Much more intuitive way to think about our scientific problems
• High level pattens supported directly
• Uses task stealing to keep working threads busy when the problem is

inhomogeneous
• Very flexible task scheduler that can be interacted with directly, if

needed
• Support for flow graphs, which can be used to build complex workflows
• Support utilities for concurrency: thread safe containers, fast threaded

malloc, timing functions

12

What we do with TBB today

• Using parallel_for to execute data parallel tasks
concurrently

• Using parallel_reduce to parallelise calculations
that have dependencies across data objects

• Looking at how concurrent_vector can be used
• How TBB pipelines work, as a way of chaining

different tasks together in an ‘assembly line’

13

Final Note

• We’ll look at two threading toolkits today
• However, there are many toolkits available

• Only you are going to know which one fits best with
your problem and the resources you have at your
disposal

• Threading is hard, so choose your weapon with
care!

14

