AT

Karlsruhe Institute of Technology

Concurrent
Programming in C++

Graeme Stewart and William Breaden-Madden

University | School of Physics

of Glasgow | & Astronomy 2015-09-06

Modern CPU Evolution

e Moore’s law continues for
NOW™

e SO transistor density
doubles approximately
every 24 months

e This used to mean that
computers were about x2
faster every 2 years

e But not anymore - hardly
any increases now in clock
speed

e So little increase in
single threaded
performance

Processor Scaling Trends

® Clock Speed (MHz)
@® Transistors (millions)

Clock .
Speed g

. - »
L) L) B
S00 ® Power (W) 55 . = e
* ve . 2 °a 2
SpecFp2006 5 2T Qo d ﬂ .
50 (] - -
i 2 . =t {' 5
: .o:..a o 'o.:'.‘ti
5 > . i ; v
> o og e sy
° . o . s * e
0.5 :
0.05
oore's
0.01 Law
1970 1980 1990 2000 2010

Date

Charles Leggett, LBL

*With some signs of
slowing, however!

CPU Real Estate

* Increasing numbers of transistors are looking for
something useful to do:

e \ector registers
» (Qut of order execution
e Multiple Cores
 Hyperthreading

 However, although these things are good at increasing
the theoretical throughput of the CPU, exploiting these
techniques can be far from easy

e For a lot of problems trivial parallelisation is sufficient to exploit multiple cores

e This can even be exploited via slots in a batch system and we don’t care what runs
where

* High energy physics has been able to adopt this technique for many years, very
successfully

e But sometimes this isn't enough

» Overheads of trivial parallelisation can be non-trivial (file merging, message passing,
batch and grid workload managers)

* And are sysadmins really going to want to have 63 job slots on a Xeon Phi...?
Unlikely.

 Memory consumption can be considerable
* May not make best use of hardware

« Cores might go idle, because we run out of memory before we run out of cores
(lightweight cores, many core machines)

Types of Parallelism

e Data Parallelism e Jask Parallelism
 When we do the When we use the
same thing to many same data as input
independent data to various different
objects tasks

e Mixed Parallelism

* But often we should mix and match these
approaches to get the best results

5

Going Parallel

* Programming in parallel requires thinking about a problem to identity
the best way forward

 Decomposition - how can | break the task down?
e Scaling - will things work as the task or the resource gets bigger?
« Patterns - does this task fit a model other people solved already?

e Correctness - am | getting the right answer, or just a faster wrong
one?

e As you discover more about parallelism you'll develop better
intuition about how to approach all of these questions

 Adding parallelism is a fundamental design choice - you are
choosing a different path from a serial code design

The parallel punch-up:
Ahmdal vs. Gustavson

o Just about the first thing everyone learns about
parallelism is Ahmdals Law

e [he observation that as the parallel portion of an
applications run time goes down with increasing
concurrency, the total run time becomes dominated by
the serial portion

e t=5+ p/n
e ASN—oo, t—S

e SO, for a fixed problem size, serial overheads may Kill
your ability to exploit parallelism

v

The parallel punch-up:
Ahmdal vs. Gustavson

 However, Gustavson observed that this is only true for
a fixed problem size

* |f you can scale up the problem, as your parallel
resources increase, then your scaling will be
maintained

e t=s5+p/n
 AsnT try to increase p as well

* |.e., Scale the problem to the number of processors,
don’t fix it in size

What we [ook at today

* Joday's tutorial is divided into two parts
e Multi-threading in C++
* Intel Threaded Building Blocks

C++ Threads

o With C++11, language support was added for concurrency

e This was a great step forwards, as it properly defined the
behaviour of C++ in concurrent environment

¢ e.9., the C++ memory model

* Although support might be considered quite basic (compared to
other toolkits), it's a great step forwards from the low level
threading libraries used before, like pthreads

e Asthis is language supyport, it's not going away and will probably
improve

« Using C++ threads is a good way to learn some of the basic
advantages and problems that come up when programming
concurrently

10

What we do with C++
Ihreads today

How to spawn threads, wait or detach them and identify them

Passing arguments to the thread’s invocation function and
what can go wrong when we try to do that

What can happen if threads access data at the same time:
data races

How to protect against this using a mutex and how to avoid
deadlock

Avoiding locks with atomic variables

How to launch from asynchronous functions and read their
return values from a future

11

Intel IThreadea Building
BloCkS

High level toolkit for managing concurrency in C++

Not oriented at threads at all, but at parallel tasks

 Much more intuitive way to think about our scientific problems
High level pattens supported directly

Uses task stealing to keep working threads busy when the problem is
INnhomogeneous

Very flexible task scheduler that can be interacted with directly, if
needed

Support for flow graphs, which can be used to build complex workflows

Support utilities for concurrency: thread safe containers, fast threaded
malloc, timing functions

12

What we do with TBB today

e Using parallel_for to execute data parallel tasks
concurrently

 Using parallel_reduce to parallelise calculations
that have dependencies across data objects

* Looking at how concurrent_vector can be used

 How TBB pipelines work, as a way of chaining
different tasks together in an ‘assembly line’

13

& Final Note

OpenCL m

 We'll look at two threading toolkits today

* However, there are many toolkits available

* Only you are going to know which one fits best with

your problem and the resources you have at your
disposal

 [hreading is hard, so choose your weapon with
care! .

L P

D

FastFlow

OpenMP

14

