Discussion: CORSIKAS8 OuTtrPuT FORMAT

Remy L. Prechelt
July 30, 2020



SUMMARY

« Ralf put together a very Google Doc containing some detailed

discussion and many useful links here.

o D've extracted some of the key discussion points into these slides to help start the

meeting discussion.

« All of this information is taken from the Google Doc so they don’t necessarily reflect

my (personal) opinions.

o These slides are a I As we have the discussion during the meeting, I will update

the content and post an updated version to the Indico afterwards.

1/15


https://docs.google.com/document/d/1mBmTRQxsy01j29qhr8tvFlA7Up2fTsgTYnaelOL0edE/edit

WHY WE NEED A DEFAULT FORMAT

« While some large collaborations (CTA, IceCube, etc.) will want to develop their own
custom output formats to interface with their infrastructure, there is a large body of
users who will want to run C8 and immediately get production-quality output in a
standard format suitable for analysis.

o The actual implementation (currently as part of the Detector hierarchy discussed last
week) will allow users to implement custom output formats relatively easily (to
support these larger collaborations).

2/15



THINGS TO CONSIDER

A lot of the discussions in the Google Doc are framed around the three standard I/O use

cases:

1. Writing data

o Since most of the C8 usage will be write-once, this is probably the least important

use-case.
2. Sharing & distributing data.

o This includes sharing a library of showers, a single shower, or just a specific
subcomponent (i.e. radio waveforms) of a shower.

3. Reading data.

o This is probably the most important considering the longevity of large shower libraries
(data is saved once but analyzed many times).

3/15



WisH LisT

These are the I/O wish list items currently in the GDoc:

1. Human-readable metadata.

Accepts all types of (raw) data.

Robust against failures (native checksumming?)
Flexible on different systems (portable).

Fast (parallel I/O).

Easy to share & distribute.

Explicit versioning (archival ready).

® N U » D

Hierarchical - groups, subdirectories, etc..

4/15



WisH Li1ST (CONT.)

9. Simple to develop and maintain.

10. Useable from at least C++ and Python.

11. 222

5/15



FiLE FORMATS

The file formats that have currently been proposed (with links):

Single-file binary or text+binary: Filesystem-based formats:
« HDF5 + A standardized filesystem-based format
« ROOT like Exdir (or sim.)
« ASDF o A completely custom filesystem-based
« Parquet format.

« Protobuf « The C7 directory/file format.

6/15


https://www.hdfgroup.org/solutions/hdf5/
https://ph-root-2.cern.ch/
https://github.com/asdf-format/asdf
https://parquet.apache.org/
https://developers.google.com/protocol-buffers
https://exdir.readthedocs.io/en/latest/

SINGLE FILE vS. FILESYSTEM-BASED FORMATS

The formats that are under consideration fall into two categories:

« Single file formats (HDF5, ROOT, Parquet, ASDEF, ProtoBuf) with an internal
hierarchy. These are typically binary or text+binary (ASDEF).

o Each of these formats has their own advantages and disadvantages (outlined below).
o Easy to share the whole file but can be difficult to share a specific subcomponent.

« Filesystem-based formats where the hierarchy is created using directories on the
filesystem (ExDir, C7, other).

o This includes a completely custom format or something that is based on an open-source
standard like ExDir.

7/15



FILESYSTEM-BASED FORMATS

« Filesystems are easy to work with and o (Midly) awkward to share large shower
allow for easy inspection of the full libraries (tar, share, untar).
hierarchy. o Without standardization between
o Metadata is often text-based so is subcomponents, can easily become
inspectable with standard Unix tools. convoluted to read. See the motivation
« Easy to extract a specific subcomponent for the Exdir format (standardized
to share if a user doesn’'t need access to metadata formats).
the full data output. o 2??
o 222

8/15



ExDir is a WIP open-source standard for hierarchical array data. It is based on the HDF5
model but uses filesystem directories instead of HDF5 groups.

o Uniform directory structure with « Still WIP and the project has not been
extensive YAML metadata that is updated in over a year.

inspectable with Unix tools. o Limited support for non-array-like data.

« Stores arrays in ‘npy" files that are easily . 222
read in any language (simple format).

o Directly convertible to a HDF?5 file for
sharing (still in beta).

o 27?

9/15



ROOT

o Extremely fast to read and write (fastest « Introduces a hard-dependency on a
proposed I/O format) - both large software library that has many
sequentially and in-parallel. versions still in use - this will require

« Good support for various compression extensive CI testing.
algorithms on only the needed o Can we guarantee backwards
subcomponents. compatibility over several ROOT &

» Good support for checksumming to CORSIKA versions?
guarantee (long term) data accuracy. o 222

« With uproot, reading can be done
without ROOT installed - only
machines that actually run C8 would
require ROOT. 10/15



« Relatively fast to read and write (ROOT o Cannot work/extract/modify with
and Parquet are still faster) standard Unix tools - everything must

o Widespread use in a wide number of go through HDF5-specific tools.
fields - already used for COREAS output e Introduces a hard-dependency on a
from C7. large software library.

« Has a sophisticated group and hierarchy « Parallel I/O performance is not great

system. and can be difficult to tune.

« Basic support for row-wise and « Very hard to extract a specific
column-wise compression (difficult to subcomponent (deleting a group does
tune). not remove it from the file).

» Good support for N-dimensional arrays. e 22?

11/15
o 22? “Moving Away from HDF5



https://cyrille.rossant.net/moving-away-hdf5/

OTHER FORMATS

There are several other formats that were considered that are (probably) not worth
discussing in detail due to various major weaknesses (for C8) - they are included in the
following slides for reference. Let me know if you disagree.

12/15



Parquet is a columnar storage format for the Apache Hadoop ecosystem:

o Very fast sequential & parallel I/O « Another hard dependency on an
(second only to ROOT). additional software library - multiple
o Very fast compression & decompression. C++ implementations (neither are 100%

. feature complete).
« Instantaneous conversion to Apache " plete)

Arrow for in-memory processing.
o 227
 Poor or non-existent support for
checksumming, compression, and
reading particle files.

o 272 13/15



ASDF

ASDF is a new text+binary file format designed to replace FITS:

o Text-based YAML metadata at start of o Still and rapidly changing -
file is inspectable with Unix tools. may be too immature for C8.

o Itis a simple format that can be o Poor or non-existent support for
written/read without any large external checksumming, compression, and
libraries. reading partial files.

o 222 o 222

14/15



PROTOBUF

« Great support for versioning and « Not designed as a disk format (designed
backwards compatibility. as a message serializer). The mapping to

o Fast to serialize data structures. disk is not defined as part of the

. 222 standard and is therefore

« Difficult to support custom data types as
message specification is specified in
custom DSL and then transpiled to C++
with protoc.

o 27?

15/15



