
Discussion: CORSIKA8 Output Format

Remy L. Prechelt

July 30, 2020



Summary

• Ralf put together a very comprehensive Google Doc containing some detailed
discussion and many useful links here.

• I’ve extracted some of the key discussion points into these slides to help start the
meeting discussion.

• All of this information is taken from the Google Doc so they don’t necessarily reflect
my (personal) opinions.

• These slides are a WIP! As we have the discussion during the meeting, I will update
the content and post an updated version to the Indico afterwards.

1/15

https://docs.google.com/document/d/1mBmTRQxsy01j29qhr8tvFlA7Up2fTsgTYnaelOL0edE/edit


WhyWe Need a Default Format

• While some large collaborations (CTA, IceCube, etc.) will want to develop their own
custom output formats to interface with their infrastructure, there is a large body of
users who will want to run C8 and immediately get production-quality output in a
standard format suitable for analysis.

• The actual implementation (currently as part of the Detector hierarchy discussed last
week) will allow users to implement custom output formats relatively easily (to
support these larger collaborations).

What should be the default file format for “standard” C8 users?

2/15



Things to Consider

A lot of the discussions in the Google Doc are framed around the three standard I/O use
cases:

1. Writing data
• Since most of the C8 usage will be write-once, this is probably the least important

use-case.

2. Sharing & distributing data.
• This includes sharing a library of showers, a single shower, or just a specific

subcomponent (i.e. radio waveforms) of a shower.

3. Reading data.
• This is probably the most important considering the longevity of large shower libraries

(data is saved once but analyzed many times).

3/15



Wish List

These are the I/O wish list items currently in the GDoc:

1. Human-readable metadata.

2. Accepts all types of (raw) data.

3. Robust against failures (native checksumming?)

4. Flexible on different systems (portable).

5. Fast (parallel I/O).

6. Easy to share & distribute.

7. Explicit versioning (archival ready).

8. Hierarchical - groups, subdirectories, etc..

4/15



Wish List (cont.)

9. Simple to develop and maintain.

10. Useable from at least C++ and Python.

11. ???

5/15



File Formats

The file formats that have currently been proposed (with links):

Single-file binary or text+binary:

• HDF5

• ROOT

• ASDF

• Parquet

• Protobuf

Filesystem-based formats:

• A standardized filesystem-based format
like Exdir (or sim.)

• A completely custom filesystem-based
format.

• The C7 directory/file format.

6/15

https://www.hdfgroup.org/solutions/hdf5/
https://ph-root-2.cern.ch/
https://github.com/asdf-format/asdf
https://parquet.apache.org/
https://developers.google.com/protocol-buffers
https://exdir.readthedocs.io/en/latest/


Single File vs. Filesystem-based Formats

The formats that are under consideration fall into two categories:

• Single file formats (HDF5, ROOT, Parquet, ASDF, ProtoBuf) with an internal
hierarchy. These are typically binary or text+binary (ASDF).

• Each of these formats has their own advantages and disadvantages (outlined below).
• Easy to share the whole file but can be difficult to share a specific subcomponent.

• Filesystem-based formats where the hierarchy is created using directories on the
filesystem (ExDir, C7, other).

• This includes a completely custom format or something that is based on an open-source
standard like ExDir.

7/15



Filesystem-based Formats

Advantages:

• Filesystems are easy to work with and
allow for easy inspection of the full
hierarchy.

• Metadata is often text-based so is
inspectable with standard Unix tools.

• Easy to extract a specific subcomponent
to share if a user doesn’t need access to
the full data output.

• ???

Disadvantages:

• (Midly) awkward to share large shower
libraries (tar, share, untar).

• Without standardization between
subcomponents, can easily become
convoluted to read. See the motivation
for the Exdir format (standardized
metadata formats).

• ???

8/15



ExDir

ExDir is a WIP open-source standard for hierarchical array data. It is based on the HDF5
model but uses filesystem directories instead of HDF5 groups.

Advantages:

• Uniform directory structure with
extensive YAML metadata that is
inspectable with Unix tools.

• Stores arrays in ‘.npy‘ files that are easily
read in any language (simple format).

• Directly convertible to a HDF5 file for
sharing (still in beta).

• ???

Disadvantages:

• Still WIP and the project has not been
updated in over a year.

• Limited support for non-array-like data.

• ???

9/15



ROOT

Advantages:

• Extremely fast to read and write (fastest
proposed I/O format) - both
sequentially and in-parallel.

• Good support for various compression
algorithms on only the needed
subcomponents.

• Good support for checksumming to
guarantee (long term) data accuracy.

• With uproot, reading can be done
without ROOT installed - only
machines that actually run C8 would
require ROOT.

• ???

Disadvantages:

• Introduces a hard-dependency on a
large software library that has many
versions still in use - this will require
extensive CI testing.

• Can we guarantee backwards
compatibility over several ROOT &
CORSIKA versions?

• ???

10/15



HDF5

Advantages:

• Relatively fast to read and write (ROOT
and Parquet are still faster)

• Widespread use in a wide number of
fields - already used for CoREAS output
from C7.

• Has a sophisticated group and hierarchy
system.

• Basic support for row-wise and
column-wise compression (difficult to
tune).

• Good support for N-dimensional arrays.

• ???

Disadvantages a:

• Cannot work/extract/modify with
standard Unix tools - everything must
go through HDF5-specific tools.

• Introduces a hard-dependency on a
large software library.

• Parallel I/O performance is not great
and can be difficult to tune.

• Very hard to extract a specific
subcomponent (deleting a group does
not remove it from the file).

• ???
aMoving Away from HDF5

11/15

https://cyrille.rossant.net/moving-away-hdf5/


Other Formats

There are several other formats that were considered that are (probably) not worth
discussing in detail due to various major weaknesses (for C8) - they are included in the
following slides for reference. Let me know if you disagree.

12/15



Parquet

Parquet is a columnar storage format for the Apache Hadoop ecosystem:

Advantages:

• Very fast sequential & parallel I/O
(second only to ROOT).

• Very fast compression & decompression.

• Instantaneous conversion to Apache
Arrow for in-memory processing.

• ???

Disadvantages:

• Another hard dependency on an
additional software library - multiple
C++ implementations (neither are 100%
feature complete).

• Poor support for hierarchy and grouping
in a single file.

• Poor or non-existent support for
checksumming, compression, and
reading particle files.

• ??? 13/15



ASDF

ASDF is a new text+binary file format designed to replace FITS:

Advantages:

• Text-based YAML metadata at start of
file is inspectable with Unix tools.

• It is a simple format that can be
written/read without any large external
libraries.

• ???

Disadvantages:

• Still very young and rapidly changing -
may be too immature for C8.

• Poor or non-existent support for
checksumming, compression, and
reading partial files.

• ???

14/15



Protobuf

Advantages:

• Great support for versioning and
backwards compatibility.

• Fast to serialize data structures.

• ???

Disadvantages:

• Not designed as a disk format (designed
as a message serializer). The mapping to
disk is not defined as part of the
standard and is therefore not portable.

• Difficult to support custom data types as
message specification is specified in
custom DSL and then transpiled to C++
with protoc.

• ???

15/15


