
A Discussion of CORSIKA8 Output Formats
+ and a brief review of current status

R. Prechelt
September 24, 2020



Outline

Current Status

Decisions and Questions

Formats

1/16



Current Status



Review

To review previous discussions:

• The proposed built-in C8 output format is a filesystem directory with
subdirectories for output components.

• Metadata and small output data (i.e. fit parameters, depth of Xmax, etc.) are
stored in YAML metadata files. There is a top-level YAML file at the root of the
output directory with global metadata.

• Larger output files will be stored in a TBD file format alongside the YAML files.

As soon as we can make a preliminary decision on a format, I can move head with
the implementation for the current processes.

2/16

https://rollout.io/blog/yaml-tutorial-everything-you-need-get-started/


Current Implementation (MR)

Working
• Generation of the filesystem hierarchy given
an output list.

• My interpretation of the architecture;
processes are responsible for writing their
outputs into a provided handle. Fine control
via InitializeOutput, NextRun,
NextEvent, and FinalizeOutput
methods.

• Creation of the YAML metadata files with
some basic values.

• Multiple instances of the same process can
be used with different unique names.

TBD
• Decision on a data format
and helpers for reducing
code duplication

• Automatic generation of the
process list into the YAML
file is mostly done but still
needs tweaks.

• Physics processes are
almost “state-free” with
state encapsulated into the
“Detector”.

3/16



Python Package

• I also have a working Python package skeleton corsika that provides a
high-level API for accessing all the metadata from a given library (without the
user finding+loading individual YAML files).

• This is currently pip-installable with generated docs, static typing, linting etc.
• Will update and maintain this once we have decided on an output data
format.

4/16



Example Top-Level Metadata File

1 ---
2 name: "A library name"
3 version: "8.0.0-alpha"
4 commit: b054578ce
5 num_showers: 100
6 processes:
7 - pythia
8 - sibyll
9 - tauola
10 outputs:
11 - groundparticle
12 - radio
13 - cherenkov

5/16



Decisions and Questions



Fortran Support?

• Previous discussions assumed C++ (w/ ROOT) and Python support were
required and other languages were a bonus (my interpretation).

• Comments on the Gitlab issue suggest that reading C8 output into Fortran
may be a required feature.

• This significantly changes the available formats as most (but not all) of the
formats we have discussed don’t have Fortran readers and it would be
challenging (if not impossible) to write them.

Is a Fortran reader a requirement for C8?

6/16

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/-/issues/296


Hierarchy Ordering (1/3)?

There are two options for the
ordering of the filesystem
hierarchy:
• library -> shower ->
process

• library -> process
-> shower

1 <library name>/
2 <library name>.yaml
3 shower0001/
4 shower0001.yaml
5 radio/
6 ...
7 cherenkov/
8 ...
9 ground/
10 ...
11 shower0002/
12 ...

7/16



Hierarchy Ordering (2/3)?

1 <library name>/
2 <library name>.yaml
3 radio/ # showers could be in their own subdirectories
4 radio.yaml
5 shower0001/
6 waveforms.{dat,root,parquet,npy}
7 shower0002/
8 cherenkov/ # or showers combined into fewer files
9 cherenkov.yaml
10 cherenkov_photons.{dat,root,parquet,npy} # all showers

8/16



Hierarchy Ordering (3/3)?

Option A (lib.->shower->comp.)
• Easy to extract individual
showers from the library
(each shower is just a
directory)

• Requires more individual
files (metadata and data)
but does allow an
individual shower to be
used outside of the scope
of the library (standalone).

Option B (lib.->comp.->shower)
• Easily extract individual components from
the library - i.e. all ground particle files are
in one directory, all radio waveforms are in
one directory.

• If showers are stored in subdirectories,
extracting a subcollection of showers
requires traversing the hierarchy multiple
times (not too hard).

• If showers are stored in large multi-shower
files, will require a custom script/program to
extract showers from the library.

9/16



Formats



Summary

The formats we are discussing are generally split into two types: array-oriented
and record-oriented.

The array-oriented formats are oǒten the most performant at reading large
chunks of contiguous tabular data (most of our large files will probably fit into an
array or tabular format). I’ve been focused on the array-oriented formats.

Array-Oriented

• NPY (NumPy) (.npy, .npz)
• ROOT flat n-tuples using
exlib/inlib

• Apache Parquet

Record-Oriented
• XCDF
• Protobuf
• Cap’n’Proto

10/16



Implementations & Discussions

• Ralf put together several variations on the ObservationPlane that write to
.root, .hd5, and .parquet - the sources are here. and are worth looking
at.

• Ralf, do you have any comments on this?
• Much of the discussion surrounding these formats has been on this issue.

11/16

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/-/tree/output_format_testing/Processes/ObservationPlane
https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/-/issues/296


ROOT

• inexlib_rio which is a standalone implementation of the ROOT file
reading/writing for NTuples.

• It is easy to use and is roughly as fast as the standard ROOT I/O (based upon
my initial benchmarking).

• It has not been updated in 5 years so we may be taking on some maintenance
responsibility if ROOT ever makes a forward-incompatible change.

• This opens the possibility of writing ROOT files without needing a full ROOT
installation.

• This does limit analysis to C++ and Python (mostly).

12/16

https://github.com/gbarrand/inexlib_rio


Parquet (Arrow)

Parquet is a HPC-oriented tabular data format part of Apache Arrow.

• Large supported ecosystem (Pandas, Hadoop, compression algorithms, and
more) and available in many languages (Python, C, C++, MATLAB, Julia, R, and
more).

• Arrow in-memory representation is very fast, can be mmap’d from Parquet
files, and interfaces with CUDA. Supports streaming writes!

• A 2 year old comparison between Parquet and ROOT is available here.
Parquet has improved since then.

• Minimal build takes ~10-15s to compile on a single laptop core so won’t
appreciably add to our build.

13/16

https://arrow.apache.org/
https://indico.fnal.gov/event/16264/contributions/36460/attachments/22608/28035/pivarski-parquet.pdf


ROOT vs. Parquet

• This is a 2-yr old comparison of
ROOT vs. Parquet by the author
of uproot (Jim Pivarski)

• I’ve been replicating this with
the latest Parquet using fake
particle data and Parquet is
significantly faster. For
reasonable C8 file sizes, I’d
consider the read performance
of ROOT and Parquet to be
roughly comparable.

14/16



Numpy

• Another proposed alternative is to direct write Numpy NPY array files. These
are an extremely simple format for storing N-dimensional heterogenous
arrays (you can write a basic reader from the spec < 30 minutes).

• Extremely fast to read (2x as ROOT/Parquet if reading the whole file).
• Requires reading the entire array - none of the tabular or chunked
advantages of ROOT/Parquet. Streaming writes can be tricky.

• Multi-array (multi-shower) files (.npz) are standard zip files so they can be
separated with standard ’Nix tools.

• Implementations available in many languages (C++, Julia, MATLAB, R, et al.)

15/16



Discussion

What do we need to see in order to come to a conclusion about a format?

16/16


	Current Status
	Decisions and Questions
	Formats

