

Learnings from developing and maintaining a
research software that has been used more than

3 million times in the last 3 years

Dr. Abhishek Dutta
adutta@robots.ox.ac.uk

Senior Research Software Engineer, University of Oxford

International Series of Online Research Software Events (SORSE), Nov. 10, 2020

Our Vision

● Develop, maintain and support computer vision research
software that are widely used in multiple academic
disciplines and industrial sectors.

Our Vision

● Develop, maintain and support computer vision research
software that are widely used in multiple academic
disciplines and industrial sectors.

● Nurture an open source ecosystem around these
software tools to ensure sustainability and lasting impact.

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,
● easy to use,

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

In this talk, I will share how the development of a manual
annotation tool has been a valuable learning experience for us.

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

Easy to install and setup
● An anecdote from 2016: A DPhil student from our lab spent

several hours to install a manual annotation software in the
Mac laptop of another DPhil student from the Humanities
department. The manual annotation tool was essential for a
collaborative project about visual search of images.

● Being a Computer Vision lab, we required a manual
annotation tool for almost every project to develop datasets
for training computer vision algorithms. Therefore, in mid
2016, we decided to build our own manual annotation
software* because the existing tools:
– required complex installation and setup procedure, and
– they were not easy to use for non-technical users (e.g. students

from Humanities, Anthropology, History, etc.).

* VGG Image Annotator https://www.robots.ox.ac.uk/~vgg/software/via/

As we explored our options, we stumbled upon
the HTML/CSS/Javascript offline application

platform offered by all browsers.

Our requirements were very simple to state but complex to deliver:

● Up and running in less than a minute

● Easy to use for non-technical users

<html>
<head>
 <title>VGG Image Annotator version 0.0.1</title>
 <style>
 div { position:relative; }
 canvas { position:absolute; top:0; left:0;}
 </style>
</head>

<body>
 <div>

 <canvas id="regions">Browser not supported</canvas>
 </div>
 <pre id="view">x0,y0,x1,y1</pre>

 <script>
 var r = document.getElementById('regions'); // top region layer
 var im = document.getElementById('image'); // bottom image layer
 im.addEventListener('load', function() {
 r.width = im.width; r.height = im.height; // fit layers
 });
 var ctx = r.getContext('2d', {alpha:true}); // draw context
 var x0, y0, x1, y1; // coordinates
 var v = document.getElementById('view'); // export panel

 r.addEventListener('mousedown', function(e) {
 x0 = e.offsetX; y0 = e.offsetY; // top-left
 });

 r.addEventListener('mouseup', function(e) {
 x1 = e.offsetX; y1 = e.offsetY; // bottom-right
 ctx.strokeRect(x0, y0, x1 - x0, y1 - y0); // draw
 v.innerHTML += '\n' + x0 + ',' + y0 + ',' + x1 + ',' + y1;
 });
 </script>
</body>
</html>

A minimal manual annotation tool in
34 lines of HTML/CSS/Javascript.

<html>
<head>
 <title>VGG Image Annotator version 0.0.1</title>
 <style>
 div { position:relative; }
 canvas { position:absolute; top:0; left:0;}
 </style>
</head>

<body>
 <div>

 <canvas id="regions">Browser not supported</canvas>
 </div>
 <pre id="view">x0,y0,x1,y1</pre>

 <script>
 var r = document.getElementById('regions'); // top region layer
 var im = document.getElementById('image'); // bottom image layer
 im.addEventListener('load', function() {
 r.width = im.width; r.height = im.height; // fit layers
 });
 var ctx = r.getContext('2d', {alpha:true}); // draw context
 var x0, y0, x1, y1; // coordinates
 var v = document.getElementById('view'); // export panel

 r.addEventListener('mousedown', function(e) {
 x0 = e.offsetX; y0 = e.offsetY; // top-left
 });

 r.addEventListener('mouseup', function(e) {
 x1 = e.offsetX; y1 = e.offsetY; // bottom-right
 ctx.strokeRect(x0, y0, x1 - x0, y1 - y0); // draw
 v.innerHTML += '\n' + x0 + ',' + y0 + ',' + x1 + ',' + y1;
 });
 </script>
</body>
</html>

<html>
<head>
 <title>VGG Image Annotator version 0.0.1</title>
 <style>
 div { position:relative; }
 canvas { position:absolute; top:0; left:0;}
 </style>
</head>

<body>
 <div>

 <canvas id="regions">Browser not supported</canvas>
 </div>
 <pre id="view">x0,y0,x1,y1</pre>

 <script>
 var r = document.getElementById('regions'); // top region layer
 var im = document.getElementById('image'); // bottom image layer
 im.addEventListener('load', function() {
 r.width = im.width; r.height = im.height; // fit layers
 });
 var ctx = r.getContext('2d', {alpha:true}); // draw context
 var x0, y0, x1, y1; // coordinates
 var v = document.getElementById('view'); // export panel

 r.addEventListener('mousedown', function(e) {
 x0 = e.offsetX; y0 = e.offsetY; // top-left
 });

 r.addEventListener('mouseup', function(e) {
 x1 = e.offsetX; y1 = e.offsetY; // bottom-right
 ctx.strokeRect(x0, y0, x1 - x0, y1 - y0); // draw
 v.innerHTML += '\n' + x0 + ',' + y0 + ',' + x1 + ',' + y1;
 });
 </script>
</body>
</html>

Ensures that the canvas
layer is above the image

Records the locations of mouse events and
uses it to draw rectangular bounding boxes.

Ensures that the size of canvas is same as
the size of the image

Easy to install and setup
● In the last four years, we have been extending this minimal manual

annotation tool in multiple ways to build several self contained offline HTML
applications for image and video annotation.
– Full application fits in a single HTML file < 400KB
– Offline application that runs in any web browser
– Up and running in less than a minute by simply opening the HTML file in web browser

Demo

demo/

Easy to install and setup
● Someone has to spend the time:

– It can be either the users who collectively spend
countless hours in installing and setup

– or, it can be the developer who spends certain
amount of time to make the process frictionless and
quick.

● It is not a difficult decision.

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

Easy to use

How do you make something easy to use?

Easy to use

How do you make something easy to use?

● By using it everyday.

Easy to use

How do you make something easy to use?

● By using it everyday.

● Talk to people who use it.

Easy to use

How do you make something easy to use?

● By using it everyday.

● Talk to people who use it.

● Act on what you see and hear.

Easy to use
● Users are already

familiar to standard
HTML components

● Minimalism and
simplicity guides all
our decisions

● We only use the
browser behaviours
that are consistent
across all web
browsers

● Concise user guide at
the bottom of screen.

Screenshot of VIA Image Annotator

Easy to use
● We have built this tool

from ground up and
therefore we have the
flexibility to:
● Handle our events
● Draw our graphics
● Build ...

● Before our tools are
released, a lot of
people (mostly
researchers) test
these tools.

Screenshot of VIA Subtitle Annotator

Easy to use

● Video annotation is just as
easy as image annotation.

● Keyboard shortcuts helps get
manual annotation done
faster.

Screenshot of VIA Video Annotator

Easy to use
● It helps to have a User Experience (UX) developer in your

team to develop easy to use and intuitive user interfaces.
● Since we didn’t have a UX developer in our team, we

learned the art using online resources:
– User Interface Design and Implementation (MIT OCW)

– Material Design System

– Smashing Magazine

– …

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-831-user-interface-design-and-implementation-spring-2011/
http://www.material.io/
https://www.smashingmagazine.com/

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

Easy to fix, modify and extend

● We don’t minify* our JS
code to allow our users
to easily fix, modify and
extend our tools.

● Our users not only report issues but also often contribute code
to fix those issues.

* process of removing all unnecessary characters (commonly added for readability of the code) from the source code without changing its functionality.

Easy to fix, modify and extend

https://gitlab.com/vgg/via/-/blob/master/via-3.x.y/src/js/_via_temporal_segmenter.js

● We don’t depend on external libraries or
frameworks:
● You only need to know about core

Javascript to work with our code.
● Our code does not need anything other

than a standard web browser.
● Therefore, we can fit everything in less

than 400KB.
● We are always exploring ways to write code

that improves human understanding. We
want you to fix, modify and extend our code.

Easy to fix, modify and extend

https://gitlab.com/vgg/via/-/merge_requestshttps://gitlab.com/vgg/via/-/issues

We have nurtured
an open source
ecosystem around
our software tools
to help our users
fix, modify and
extend our code.

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

In the last 4 years, we learned ...

… that, to pursue our vision, our research software
tools should be:

● easy to install and setup,
● easy to use,
● easy to fix, modify and extend.

Of course, there should be a demand for the
functionality that the tools are delivering.

How has these learnings helped pursue our Vision?

How has these learnings helped pursue our Vision?

How has these learnings helped pursue our Vision?

VIA suite of tools have been used more than
3,944,000 times

since its public release in 2017.

How has these learnings helped pursue our Vision?

Thank You

VIA Software Page https://www.robots.ox.ac.uk/~vgg/software/via/

VIA Code Repository https://gitlab.com/vgg/via

LISA Code Repository https://gitlab.com/vgg/lisa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

