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Introduction

> Composition measurements with Direct Cherenkov (DC) light by IACTs
= Henrike Fleischhack, Today 09:20

> CR acceleration at Supernova remnants / Galactic CR maximum energy
= Gwenael Giacinti, Yesterday, 17:30

> Composition models: what to expect from known cosmic accelerators
= Martin Pohl, Tomorrow, 09:00

> Surely, others will also refer to y rays

> Here

= How we can use y rays to measure CR composition

= What we can learn from current instruments
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= What are the prospects for CTA?



How to use y rays to infer CR composition

> Use CR-induced air shower

= ‘background’ in y-ray astronomy

= DC light to infer charge of primary

= study EAS showers directly

= dependent on shower physics models

H.E.S.S. during Flare 2013
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> Indirectly by studying y-ray sources

[okm () O km ®)
w0m om 20m -00m . 20m = infer CR properties from y-ray spectrum
ok s (100 TeV y rays trace 1 PeV CRs)

= from individual sources and populations

= need extra multiwavelength information
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Galactic Centre with H.E.S.S.

> central source cuts off @ ~10 TeV

Galactic latitude
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> diffuse emission doesn’t show indication for cut off
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> emission likely due to propagation of protons accelerated in the central
source and diffusing away (projected radial distribution matches)

> Parent proton population up to ~1 PeV (2.9 PeV @ 68% CL)
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Direct Cherenkov light

> see also Henrike’s presentation =30 km

Shower direction DC-light

= Nuclei emit DC light and imaged closer to the
shower direction in the camera

Intensity « Z2 - sin?(6,) \ = Ezo
10 — 500 TeV range -
Particle energy from extensive air shower light
Charge from DC light
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Direct Cherenkov light

> Limitations

= minimum energy above which Cherenkov light is
emitted — ~10 TeV for iron

= maximum energy below which DC light is still
identifiable — DC is ~independent of E, EAS
increases ~linearly with E

= shower interaction model — absolute energy
scale

= atmosphere model — light distribution in camera

= reconstruction of shower properties — energy
resolution, total number of identified events in
images

= identification of proton/helium ‘background’
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Direct Cherenkov light

> Limitations T
£ f

= minimum energy above which Cherenkov light is gw‘g
emitted — nothing we can do about Yol

= maximum energy below which DC light is still 1°’E

identifiable & maybe with CTA, see next slide

= shower interaction model — e.g. LHC, theory

1 E
= atmosphere model = monitoring of IACTs o o ]
= reconstruction of shower properties — Henrikes 1 N prmary Charge 2

talk
= identification of proton/helium ‘background’ ;w - ;
— Henrikes talk (multivariate analyses) - _
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More events

More photons = better spectra, images,
fainter sources

— Larger collection area for y rays
Better events

More precise measurements of
atmospheric cascades and hence primary
y rays and nuclei

— Improved angular resolution

— Improved background rejection power

More telescopes!

Simulation:
Superimposed images
from 8 telescopes




The Cherenkov Telescope array

~ A user facility / proposal-driven observatory

= With two sites with a total of >100 telescopes

= A 32 nation ~€300M project

=~ Non-y-ray physics is part of key science program




Prospects for CTA — DC light

Reconstructed charge distribution (E>12.5 TeV)

> Simulations (Michiho Ohishi, et al., ICRR Tokyo) Zewf s
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Prospects for CTA — DC light

Timing

= arrival time of DC light delayed to EAS light

= CTA cameras will provide timing info

= could reach up to 1 PeV energies (cu

Number of triggered pixels: 914 of 1855
Number of pixels after cleaning: 849
Number of significant pixels: 1855
Sum of signals in 849 selected pixels: 129293.5 p.e.

rrently 200 TeV)

PMT signal profile of each
component (LST case)
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Prospects for CTA — hadron showers

> DC light is a good way but has its limitations
> EAS itself carries plenty of information (especially if seen with many IACTSs)

> Probe interaction models

= compare rates
= compare shower shapes
= compare muon content

— more or less unexplored territory
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Prospects for CTA — y-ray sources

1. Identify cosmic particle accelerators (see Martin Pohls talk tomorrow)
2. ldentify hadron accelerators

3. measure composition?
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|dentify cosmic particle accelerators (see Martin Pohls talk tomorrow)

is straightforward (~100 Galactic sources detected so far)

many different source types (now including stellar clusters and superbubbles)
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will see many more with CTA

but what is the underlying emission mechanism?
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Prospects for CTA — y-ray sources

2. ldentify hadron accelerators

. only at >50 TeV energies
unambiguously possible

. only one object known to emit at
these energies Optical, UV,

- CTA will improve at high energies H‘eav“y‘"
absorbed

Inverse Compton
Scattering

Infra-red

107114

= CTA should find a handful of young
SNRs emitting at ~100 TeV

\ = other sources (e.g. stellar clusters?)

= how to measure their composition?
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Prospects for CTA - y-ray sources . = [ =
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Declination (J2000)

3. measure composition?

- not clear how with y rays alone, maybe E 2oy 28 2w 2918
Right ascension (J2000)

max

. additional input needed
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= provides input to emission modeling £ Fge
o : 3
> mm/sub-mm, infrared 0.1 ),
: I%l:
= Environment in which particles are accelerated B F XMM-Newton Cassiopeia A "
= lonisation studies from mainly low-energy CRs 1 Energy("(ev) 1o
(but no composition and/or high energies)

> Future optical facilities

- maybe probe faint line emission from non-radiative

shocks — probe injection region?
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Prospects for CTA — y-ray sources

3. measure composition?

- not clear how with y rays alone, maybe E

. additional input needed

> X-rays

. spectroscopy to measure composition near

accelerators

> Neutrinos

. point back to their acceleration site
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= diffuse neutrinos likely beyond reach of CTA
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Summary

> Current experiments
= mainly explored DC light up to ~150 TeV with limited charge resolution
= indication of the first ‘PeVatron’ in Galactic Centre

= large data sets sitting on disk and not fully explored yet

> CTA

= DC light studies offer potential to probe other elemental groups and reach higher energies

= CTA will probe entire galaxy — population studies, very high-energy emission from sources
other than SNRs

= Potential to probe interaction models with shower images (e.g. shape, muon content)
= Multi-wavelength and multi-messenger approach very important
— Galactic high-energy neutrinos? Counterpart(s) in y rays?

— Need to study CRs at their accelerators and at Earth
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