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Time of big changes ('Perestrojka’) for shower simulations

Old times: clear differences between models
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Time of big changes ('Perestrojka’) for shower simulations

Start of LHC triggered model updates
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Time of big changes ('Perestrojka’) for shower simulations
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Time of big changes ('Perestrojka’) for shower simulations

But also lots of other very valuable data
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Time of big changes ('Perestrojka’) for shower simulations

Additionally: serious updates not related to LHC data

Not directly related to LHC data:

1 Baryon-Antibaryon pair production (Pierog, Werner)
+ Baryon number conservation
+ Low-energy particles: large angle to shower axis
+ Transverse momentum of baryons higher
+ Enhancement of mainly low-energy muons

(Grieder ICRC 1973; Pierag, Werner PRL 101, 2008)

2 Leading particle effect for pions ~ (Drescher 2007, Ostapchento)
+ Leading particle for a w could be p” and not °
+ Decay of p° almost 100% nto two charged pions

Average number of muons (N‘LL)/E‘Prim per energy
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How uncertain are present model predictions?
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Option SD-: smaller low mass diffraction
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o = smaller Xy« (all effects work in the same direction):
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How uncertain are present model predictions?
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Option SD+:

@ opposite effects

@ but: minor impact on Xpax (AXmax < 5g/cm2)
@ in both cases: minor impact on RMS(Xpay): < 3g/cm’




How uncertain are present model predictions?
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Is everything allowed now?

Let us compare Xpax of EPOS-LHC & QGSJET-II1-04
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Is everything allowed now?

Let us compare Xpax of EPOS-LHC & QGSJET-II1-04

o

'E 800 primary proton (8=0) "."_
@ and construct 'mixture B
models’ fﬁ
@ use
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and
QGSJET-II for the rest

® AXpax ~ 5 g/cm? - in
agreement with above
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Is everything allowed now?

Let us compare Xp.x of EPOS-LHC & QGSJET-II1-04
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Is everything allowed now?

Let us compare Xp.x of EPOS-LHC & QGSJET-II1-04

°
QGSJET-II - rest

® AXpax =~ 5 g/cm? - in
agreement with above

@ now from the other side:
QGSJET-II spectra for
p,P,n,n production in
T — air, K — air
and EPQOS for all the rest

0 AXpax ~ 4 g/cm?

800 primary proton (8=0) %

Xy (gfem?)
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@ remaining difference: 00 [
partly due to harder pion :
spectra in p — air 10 10 10"




Pion-air interactions relevant for N,

Energy distribution of last interaction
that produced a detected muon
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Pion-air interactions relevant for N,

Ert gec ~ 30GeV

Typically 8-10
interactions

@ muon 'parent’ pions: from
low energy interactions

@ preceeded by a multi-step

hadron cascade i/

@ ~ 1 cascade step per
energy decade

@ which m— air interactions
most important?

[from R. Engel]




Pion-air interactions relevant for N,

n=1
@ multi-step hadron cascade
8 ~ 1 cascade step per
energy decade
n=2
@ which ®— air interactions
most important?
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@ each order of magnitude:
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Pion-air interactions relevant for N,

E.g. let us study the difference in N, for SIBYLL & QGSJET-II
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Pion-air interactions relevant for N,

Half the difference comes from 7 — air interactions above 1 TeV!
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Pion-air interactions relevant for N,

Half the difference comes from 7 — air interactions above 1 TeV!
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No data for pion air above 1 TeV?

@ but: relevant physics is there for E < 1 TeV
(e.g. p° production)

@ = use fixed target data to test the models



Pi No data for pion air above 1 TeV?

@ but: relevant physics is there for E < 1 TeV
(e.g. p° production)

@ = use fixed target data to test the models

New data from NA61 very useful
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Pion-air interactions relevant for N,

No data for pion air above 1 TeV?

@ but: relevant physics is there for E < 1 TeV
(e.g. p° production)

@ = use fixed target data to test the models

@ but: energy-dependence of the relevant mechanisms?!
(scaling violation, p° or p production, ...)




Pion-air interactions relevant for N,

No data for pion air above 1 TeV?

@ but: relevant physics is there for E < 1 TeV
(e.g. p° production)

@ = use fixed target data to test the models

@ but: energy-dependence of the relevant mechanisms?!
(scaling violation, p° or p production, ...)

“Saving sinking people is the business of the sinking people”

[Russian national wisdom]




Testing models with air shower data

PAO measurement of the muon production depth X«
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@ challenging measurement PR i i

QGSletll-04

@ interesting results
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Testing models with air shower data

1) Hardness of pion spectra in T — air

n=1
0
L2
@ pion decay probability:
Pdecay < Eyccm/E‘n:/X
° X&ax: where Pdecay > Pinter n=3

[from J. Matthews]
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Testing models with air shower data

1) Hardness of pion spectra in T — air

n=1
0
L2
@ pion decay probability:
Pdecay < ch'ljnt / Er / X
° X&ax: where Pdecay > Pinter n=3

@ harder spectra in T — air
= deeper Xi.y (effectively
one more cascade step)

[from J. Matthews]
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Testing models with air shower data

2) Copious production of (anti-)nucleons
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[from R. Engel]

N, p.na comparable to Ny!




Testing models with air shower data

Let us compare Xhax of EPOS-LHC & QGSJET-11-04

@ and construct 'mixture
models’
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Testing models with air shower data

Let us compare Xhax of EPOS-LHC & QGSJET-11-04
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Testing models with air shower data

Let us compare Xhax of EPOS-LHC & QGSJET-11-04

@ and construct 'mixture
models’

@ use QGSJET-II spectra
for p,p,n,n production in
T — air, K — air
and EPQOS for all the rest

@ now QGSJET-II for all 550
Tt — air, K — air interact. o

and EPOS for all the rest
* o/ QGSIET 1104

; 500 | o
° the_ two effects explain "1 for n-air, EPOS for the rest
major part of the d
diff for X" 10" 10" 10"
ifference for Xmax E, V)

600 primary proton (8=0)

X_uum.\ {gfﬁl]lz )]




How robust are predictions for N,?

@ let us assume that muon predictions are o.k. up to energy Ex
@ how difficult to get enhancement at energy Ep (Ep < 100E4)?

@ this should be achieved within 2 orders of magnitude in energy
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@ let us assume that muon predictions are o.k. up to energy E,
@ how difficult to get enhancement at energy Ep (Ep < 100E4)?

@ this should be achieved within 2 orders of magnitude in energy
@ in p —air collisions, practically all pions have xg < 0.1

@ = there is less than 2 cascade steps between 10'7 and 10'°

@ = pion-air collisions are irrelevant to the excess!

@ = same applies to p- and p- mechanisms



How robust are predictions for N,?

@ let us assume that muon predictions are o.k. up to energy E4
@ how difficult to get enhancement at energy Ep (Ep < 100E4)?

& this should be achieved within 2 orders of magnitude in energy
@ in p —air collisions, practically all pions have xg < 0.1

o = there is less than 2 cascade steps between 10'7 and 10

@ = pion-air collisions are irrelevant to the excess!

@ = same applies to p- and p- mechanisms

= Muon excess has to be produced by primary CR interactions

@ if we double N, for the 1st interaction?

@ < 10% increase for N,!




How robust are predictions for N,?

@ let us assume that muon predictions are o.k. up to energy E4
@ how difficult to get enhancement at energy Ep (Ep < 100E4)?

& this should be achieved within 2 orders of magnitude in energy
@ in p —air collisions, practically all pions have xg < 0.1

o = there is less than 2 cascade steps between 10'7 and 10

@ = pion-air collisions are irrelevant to the excess!

@ = same applies to p- and p- mechanisms

= Muon excess has to be produced by primary CR interactions

@ if we double N, for the 1st interaction?

@ < 10% increase for N,!

@ to get, say, a factor 2 enhancement:
Nch should rise by an order of magnitude




Back to LHC data: they are and will be of great help

Especially true for measurements in the forward direction, like LHCf
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Back to LHC data: they are and will be of great help

Most remarkable: LHC data constrain physics mechanisms in
models

Sibyll2.3re3b —— Sibyll2.3rcd --- Sibyll 2.1

4 CMSHTOTEM pp with V5 =8TeV

B Broad dN/deta in Sibyll 2.1 by accident

@ Minijet color flow disconnected from
rest of hadron

B Large tail in multiplicity distribution

Number of minijets very high
- saturation effects missing
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o

Charged partice yield &

— Sibyll2.3rc
Pseudorapidity n 107 i

= 1

[from F. Riehn]




Back to LHC data: they are and will be of great help

Welcome to the Time of Big Changes in Sims!



