
[]

Performance and future evolution of QGSJET

Sergey Ostapchenko

Frankfurt Institute for Advanced Studies

HAP Workshop on CR Composition

KIT, September 21-23, 2015



Outline of the talk

1 Overview of the model & recent udates

2 Forward ρ0 production & π-exchange mechanism in πp

collisions

3 Inelastic diffraction: model predictions, LHC data, and EAS
characteristics

4 LHCf data on forward spectra of neutrons and π0:
model-based analysis

5 Summary



QGSJET: based on the Reggeon Field Theory approach

High energy collisions = multiple scattering processes

many parton cascades in parallel

typically small momentum
transfer along the cascades

...



QGSJET: based on the Reggeon Field Theory approach

High energy collisions = multiple scattering processes

many parton cascades in parallel

typically small momentum
transfer along the cascades

...

RFT: Pomerons = ’elementary’ cascades

e.g. elastic amplitude

requires Pomeron amplitude &
Pomeron-hadron vertices

...



QGSJET: based on the Reggeon Field Theory approach

RFT: Pomerons = ’elementary’ cascades

e.g. elastic amplitude

requires Pomeron amplitude &
Pomeron-hadron vertices

...

Hard processes included using the ’semihard Pomeron’ approach

soft Pomerons to describe soft (parts of) cascades (p2
t < Q2

0)

⇒ transverse expansion governed by the Pomeron slope

DGLAP for hard cascades

taken together:
’general Pomeron’

= +

soft Pomeron

QCD ladder

soft Pomeron



QGSJET: based on the Reggeon Field Theory approach

RFT: Pomerons = ’elementary’ cascades

e.g. elastic amplitude

requires Pomeron amplitude &
Pomeron-hadron vertices

...

Hard processes included using the ’semihard Pomeron’ approach

soft Pomerons to describe soft (parts of) cascades (p2
t < Q2

0)

⇒ transverse expansion governed by the Pomeron slope

DGLAP for hard cascades

taken together:
’general Pomeron’

= +

soft Pomeron

QCD ladder

soft Pomeron



QGSJET-II-04: full resummation of PP-interactions
[SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

Nonlinear processes: Pomeron-Pomeron interactions (scattering of
intermediate partons off the proj./target hadrons & off each other)
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Nonlinear processes: Pomeron-Pomeron interactions (scattering of
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thick lines = Pomerons = ’elementary’ parton cascades
Coherent treatment of cross sections & particle production

partial cross sections for various final states (including
diffractive): from unitarity cuts of elastic diagrams

⇒ no additional free parameters (e.g. for diffraction)

s-channel unitarity satisfied: ∑graphs,cuts χ̄cut = 2∑graphs χuncut

positive-definite cross sections for all final states
⇒ MC generation

no additional free parameters for hA & AA collisions



Most recent model update: also fine-tuning to LHC data
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TOTEM data on σ
tot/el
pp

implied slower rise of σinel
pp

⇒ same trend for σinel
p−air

⇒ deeper shower maximum
(at highest CR energies)

Development of QGSJET-II completed

full resummation of PP interaction graphs:
no further improvements needed

fine-tuning to LHC data had stronger effect on EAS
characteristics than theoretical developments

further: towards pQCD treatment of nonlinear effects
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Experimental fact: ∼ 50% of pions in πp - from resonance decays

⇒ duality approach often used in models

resonances not treated explicitely
(their contributions included in final pion spectra)

of limited appicability (e.g. threshold effects for p̄ production)

most importantly: duality isn’t good for forward production
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e.g. leading π0:
ρ-trajectory

for leading ρ0:
π-meson exchange

⇒ generally both π0 and ρ0 expected as leading hadrons

doesn’t seem to be the case in exp. data
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∼ 20% higher Nµ (> 1 GeV)
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nearly same Nµ excess up to
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Charge exchange in πp collisions
2nd caveat: isospin invariance requires same mechanism for ρ±

experimental data: controvercial

exchanges of other Reggeons potentially important

NB: forward ρ± production instead of π± would channel more
energy into e/m cascade

⇒ reduce Nµ in EAS

by how much?

Upper limit: assume isospin invariant picture

and do EAS calculations...

result: reduction of Nµ: < 5%



Inelastic diffraction

IP

IP

IP

I

I

P

P

I

I

P

P

F

η

M η

F

0

∆η > 3)(for
    6.3 mb       ~7 mb

M

M

F

F

F

F

η

η

η

η

(1.8 TeV)  (14 TeV)
σ

∆η

    9.4 mb     ~10 mb

  18 mb       ~30 mb

M1

2

∆η > 3)(for
    1.5 mb            ?

        ?            ~1 mb

 ?                 ?
IP

IP

IP

p

p

Multi
Pomeron
Exchange

p

p

p

p

p

p

p

p

p

p

p

pp

Double

p p

p

Single + Double
Diffraction
(SDD)

Exchange
(DPE)

Elastic Scattering

Single Diffraction
(SD)

Double Diffraction

Pomeron

(DD)

experimentally: formation
of large rapidity gap not
covered by secondaries

challenge for MC models

strong impact on EAS
predictions (notably Xmax)



Modification of MX-dependence for SD by absorption
[SO, PRD81 (2010) 114028, PLB703 (2011) 588]
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Modification of MX-dependence for SD by absorption
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steeper ξ-shape at large b:
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What do we see in LHC data?

Agreement of the predicted σSD
pp (MX-shape and rate) with TOTEM

MX range, GeV < 3.4 3.4−1100 3.4−7 7−350 350−1100
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QGSJET-II-04 3.9 7.2 1.9 3.9 1.5



What do we see in LHC data?

Agreement of the predicted σSD
pp (MX-shape and rate) with TOTEM

MX range, GeV < 3.4 3.4−1100 3.4−7 7−350 350−1100

TOTEM 2.62±2.17 6.5±1.3 ≃ 1.8 ≃ 3.3 ≃ 1.4
QGSJET-II-04 3.9 7.2 1.9 3.9 1.5

Predicted MX-shape agrees with SD (CMS) & rap-gaps (ATLAS)

0

0.25

0.5

0.75

1

-6 -5 -4 -3

 

 log10ξX

 d
σ SD

 / 
dl

og
10

 ξ
X  (

m
b)

 QGSJET II-04
SD (pp→Xp) at 7 TeV c.m. (CMS)  

10
-1

1

10

10 2

0 2 4 6 8

 

 ∆ηF

 d
σ/

d∆
η F  (

m
b)

 QGSJET II-04

SD  

DD  

ND  

forw. rap-gap in pp at 7 TeV c.m. (ATLAS)  



What do we see in LHC data?

Predicted MX-shape agrees with SD (CMS) & rap-gaps (ATLAS)

0

0.25

0.5

0.75

1

-6 -5 -4 -3

 

 log10ξX

 d
σ SD

 / 
dl

og
10

 ξ
X  (

m
b)

 QGSJET II-04
SD (pp→Xp) at 7 TeV c.m. (CMS)  

10
-1

1

10

10 2

0 2 4 6 8

 

 ∆ηF
 d

σ/
d∆

η F  (
m

b)

 QGSJET II-04

SD  

DD  

ND  

forw. rap-gap in pp at 7 TeV c.m. (ATLAS)  

rates of SD & rap-gaps: 30−40% below CMS & ATLAS



Inelastic diffraction & cosmic ray composition studies

Xmax – best suited for CR composition studies

predictions for Xmax depend on σinel
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pp can be reliably extrapolated thanks to LHC studies
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p−air – due to inelastic screening (correlated with σdiffr

pp )

Kinel
p−air – due to small ’inelasticity’ of diffractive collisions
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Impact of uncertainties of σSD
pp on Xmax

[SO, PRD89 (2014) 7, 074009]

Presently: serious tension between CMS & TOTEM
concerning diffraction rate in pp

TOTEM CMS

MX range, GeV 7−350 12−394

σSD
pp (∆MX), mb ≃ 3.3 4.3±0.6

dσSD
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dygap
, mb 0.42 0.62

⇒ may be regarded as a characteristic uncertainty for σSD
pp

impact on Xmax & RMS(Xmax)?
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Two alternative model versions (tunes): SD+ & SD-

SD+: increased high mass diffraction (HMD) (larger r3P)
– to approach CMS results

slightly smaller LMD – to soften disagreement with TOTEM

SD-: smaller LMD (by 30%), same HMD

similar σ
tot/el
pp & central particle production in both cases

Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS
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option SD+ 3.2 8.2 1.8 4.7 1.7
option SD- 2.6 7.2 1.6 3.9 1.7

CMS (MX = 12−394 GeV) option SD+ option SD-

4.3±0.6 3.7 3.1
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Two alternative model versions (tunes): SD+ & SD-

SD+: increased high mass diffraction (HMD) (larger r3P)
– to approach CMS results

slightly smaller LMD – to soften disagreement with TOTEM

SD-: smaller LMD (by 30%), same HMD

similar σ
tot/el
pp & central particle production in both cases

Comparison with differential SD & DD (CMS) & rap-gap (ATLAS)
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Impact on Xmax & RMS(Xmax)
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Option SD-: smaller low mass diffraction

⇒ smaller inelastic screening ⇒ larger σinel
p−air

smaller diffraction for proton-air ⇒ larger Kinel
p−air, Nch

p−air

⇒ smaller Xmax (all effects work in the same direction):
∆Xmax ≃−10 g/cm
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Option SD+: larger high mass diffraction

opposite effects

but: minor impact on Xmax (∆Xmax < 5 g/cm
2)

in both cases: minor impact on RMS(Xmax): < 3 g/cm
2



Impact on Xmax & RMS(Xmax)

Why larger Xmax differences with other models (e.g. EPOS-LHC)?

[plot from T. Pierog]

to be discussed in the summary talk



Forward production: neutrons

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

How to understand the results?



Forward neutron spectra in LHCF: different contributions
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low mass projectile diffr.: up to 50% contribution at xF → 1

main contribution: nondiffractive collisions

for large xF - dominated by pion exchange mechanism
(RRP-contribution) [Kopeliovich et al., PRD91 (2015) 054030]
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how to separate different contributions experimentally?



Forward neutron spectra: LHCF + ATLAS veto/trigger
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ATLAS to veto/trigger charged particles (pt > 0.5 GeV, |η|< 2.5)

veto removes ND almost completely!

⇒ allows a clean detection of low mass diffraction
(impossible with other LHC detectors)

triggering activity in ATLAS removes most of diffraction

⇒ neutron spectra measurement in ND events
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Forward neutron spectra: LHCF + ATLAS veto/trigger
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Combination of the 3 measurements ⇒ separation of the different
components!



’Centrality’ dependence in pp: test of pp to p-air transition
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enhanced multiple scattering

⇒ strong suppression of forward neutron production

pion exchange goes away

higher energy loss by the ’remnant’ state

important test for CR applications:
measure of the ’inelasticity’ in ND collisions

NB: ND p− air collision - like more ’central’ pp interaction
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’Centrality’ dependence in pp: test of pp to p-air transition

Compare QGSJET-II-04 (solid lines) to SIBYLL 2.1 (dotted)
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order of magnitude differences

nearly same spectral shape in SIBYLL for all the triggers!
(forward spectra decoupled from central production)

⇒ important discriminator between models



Forward production: π0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]



Forward production: π0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

How the spectra should evolve from pp to p-air?

NB: forward spectra of π± - of importance for X
µ
max!



’Centrality’ dependence as a test for pp to p-air transition

10
-5

10
-4

10
-3

10
-2

10
-1

1000 2000 3000

 

 pz (GeV/c)

 E
 d

n/
dp

z
 p+p → π0  (7 TeV c.m.)  

 pt < 0.2 GeV  

 1  

 5  

 10  

-5

-4

-3

-2

-1

1000 2000 3000
 pz (GeV/c)

 E
 d

n/
dp

z

 p+p → π0  (7 TeV c.m.)  

  0.2 < pt < 0.4 GeV  

 1  

 5  

 10  

increasing ’centrality’ of pp collisions by ATLAS triggers:

⇒ enhanced multiple scattering

⇒ softer pion spectra

clear violation of the limiting fragmentation

NB: same mechanism for violation of the Feynman scaling
(increase of multiple scattering with energy)
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’Centrality’ dependence as a test for pp to p-air transition

Compare QGSJET-II-04 (solid lines) to SIBYLL 2.1 (dotted)
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related: nearly perfect Feynman scaling in that model

NB: TOTEM & CMS may test this with charged hadrons
(mostly π±)
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Summary (1)

1 Development of QGSJET-II completed; latest update included

treatment of all significant PP-interaction contributions

calibration to LHC data (notably to σ
tot/el
pp by TOTEM)

dominance of π-exchange for charge exchange in πp

2 Further: towards pQCD treatment of nonlinear effects

not a short-term project

3 LHC data generally support the approach of the model

however, indications in the data:

for smaller low mass and larger high mass diffraction

for larger contribution of π-exchange in pp collisions

both are a matter of fine-tuning but more decisive data needed

e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS

indications for stronger saturation effects in central pA & AA

⇒ restrictions for model applicability
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Summary (2)

1 Present treatment of charge exchange in πp (πA):
likely the upper bound for Nµ in EAS

NA61 results on forward ρ0 - consistent with earlier data

isospin invariance requires a similar mechanism for ρ+

though: other Reggeon trajectories potentially important

2 Estimated uncertainties of QGSJET-II-04 predictions for EAS:

∆ RMS(Xmax)≃±3 g/cm2

∆ Xmax ≃±10 g/cm2

∆ Nµ ≃

{

+0%

−5%
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Potential impact of diffraction uncertainties on CR studies

Fit of Telescope Array data by p+Fe CR composition
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option SD+: pure proton composition excluded

option SD-: almost pure proton composition is o.k.
(astrophysically favorable scenario)




