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Outline of the talk

© Overview of the model & recent udates

@ Forward p° production & T-exchange mechanism in mp
collisions

© Inelastic diffraction: model predictions, LHC data, and EAS
characteristics

© LHCf data on forward spectra of neutrons and n*:
model-based analysis

@ Summary



QGSJET: based on the Reggeon Field Theory approach

High energy collisions = multiple scattering processes

@ many parton cascades in parallel

@ typically small momentum
transfer along the cascades
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@ e.g. elastic amplitude

@ requires Pomeron amplitude &
Pomeron-hadron vertices

Hard processes included using the 'semihard Pomeron’ approach

o soft Pomerons to describe soft (parts of) cascades (p? < QF)
@ = transverse expansion governed by the Pomeron slope
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QGSJET-II-04: full resummation of PP-interactions
[SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

Nonlinear processes: Pomeron-Pomeron interactions (scattering of
intermediate partons off the proj./target hadrons & off each other)

(@ (b) © (d) © () ()

thick lines = Pomerons = 'elementary’ parton cascades




QGSJET-11-04: full resummation of PP-interactions
[SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

Nonlinear processes: Pomeron-Pomeron interactions (scattering of
intermediate partons off the proj./target hadrons & off each other)

RN

Coherent treatment of cross sections & particle production

@ partial cross sections for various final states (including
diffractive): from unitarity cuts of elastic diagrams

@ = no additional free parameters (e.g. for diffraction)
@ s-channel unitarity satisfied: ¥ graphs cuts X" = 2 Laraphs X"

@ positive-definite cross sections for all final states
= MC generation

@ no additional free parameters for hA & AA collisions




Most recent model update: also fine-tuning to LHC data
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Most recent model update: also fine-tuning to LHC data

Q
= B J
o

p+p O
150

@ most importantly: to
tot/el
TOTEM data on 6,

| @ implied slower rise of G},‘}fl

100

50
inel
® = same trend for G,
o el ... ® = deeper shower maximum
10° 10 10° 10° (at highest CR energies

Development of QGSJET-II completed

o full resummation of PP interaction graphs:
no further improvements needed

@ fine-tuning to LHC data had stronger effect on EAS
characteristics than theoretical developments

@ further: towards pQCD treatment of nonlinear effects




n-exchange dominance for neutral meson production in 7tp

& A collisions [SO,EPJWC52 (2013) 02001]

@ the mechanism discussed at ISVHECRI-2012
@ a bit simple-minded one

@ yet important: strong impact on N, in EAS
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n-exchange dominance for neutral meson production in 7tp

& A collisions [SO,EPJWC52 (2013) 02001]

Experimental fact: ~ 50% of pions in 7p - from resonance decays

@ = duality approach often used in models

& resonances not treated explicitely
(their contributions included in final pion spectra)

@ of limited appicability (e.g. threshold effects for p production)

@ most importantly: duality isn't good for forward production

-

Forward ND production - governed by Reggeon exchanges (RRP)
u u u u

0 @ e.g. leading n*:

T[+ a—‘—’—ﬁ T[O T[+ a—‘—’—a P p-trajectory

@ = generally both ©° and p° expected as leading hadrons

@ doesn't seem to be the case in exp. data
w



Charge exchange in 1tp collisions

B 0
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Charge exchange in 1tp collisions

g T+p-p° at 250 GeV/c : .
E - QGSET-ll-o4 | @ @ssuming pion exch.ange
dominance for leading
* hadron production in tp

10

+ o @ reasonable description
of forward p° production

L o000y 1. Y e NB: central production of
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1.4

p-induced EAS

® ~20% higher N, (> 1 GeV)
i (relative to QGSJET [1-03)

1.3 —

N(QGSIET-1I-04/QGSIET-11-03)

@ the enhancement weakly
depends on Ej

@ nearly same N, excess up to
15\\\\\\\\\ léumu\ l%uum\ léuum\ e o E ~ 100 GeV
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Charge exchange in 1tp collisions
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T+p-p° at 250 GeV/c
QGSIET-11-04

@ assuming pion exchange
dominance for leading
hadron production in tp

@ reasonable description
of forward p° production

Ist caveat: large spread in exp. data for p® production
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@ NB: NAG61 data for pC (stars) added (multiplied by G},‘;fl)

¢ consistent with earlier measurements in Tp
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Charge exchange in 1tp collisions

g T+p-p° at 250 GeV/c : .
| QGSET-I1-04 | @ 3ssuming pion exchange

o
3 N dominance for leading
10 ..
hadron production in tp

+ o @ reasonable description
of forward p° production

A S A B @ NB: central production of

0 02 04 06 08 . © Ps not treated explicitely
-

2nd caveat: isospin invariance requires same mechanism for p*

@ experimental data: controvercial
@ exchanges of other Reggeons potentially important

@ NB: forward p* production instead of ©* would channel more
energy into e/m cascade

o = reduce N, in EAS
o by how much?




Charge exchange in mtp collisions

2nd caveat: isospin invariance requires same mechanism for p*
@ experimental data: controvercial
@ exchanges of other Reggeons potentially important

@ NB: forward p* production instead of ©* would channel more
energy into e/m cascade

o = reduce N, in EAS

Upper limit: assume isospin invariant picture
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Charge exchange in mp collisions

2nd caveat: isospin invariance requires same mechanism for p*
@ experimental data: controvercial
@ exchanges of other Reggeons potentially important

@ NB: forward p* production instead of ©* would channel more

Upper limit: assume isospin invariant picture

- s
3 - -
3 |, 7+p at 360 GeV/c — p° 3 | m+p at 360 GeV/c — p*
= ]
by
10 = * ()
|- ‘ ?
5 L +
- . |
:
-
L | | | |
0 0.2 0.4 0.6 0.8 1

@ and do EAS calculations...

@ result: reduction of N,: < 5%




Inelastic diffraction

a
(1.8 TeV) (14 Tev)

.
T -
Elastic Scattering ‘ P o 18mb  ~30mb
2N

P R |
. p V 'p .
Single Diffraction P ° 9.4mb  ~10mb
(Sb) P "
iy o 63mb  ~7mb
Double Diffraction . (for An
(D) b § 2

Double i
Pomeron

\"\né M e
Exchange ‘ >
(DPE) 5, -0

@ experimentally: formation
of large rapidity gap not
covered by secondaries

? ~1mb

15mb ?
Diffraction (for &n

(SDD)

_ E'EIB' @ strong impact on EAS
Pomeron ? ? . -
sl JA\ : n predictions (notably Xmax)

@ challenge for MC models




Modification of Mx-dependence for SD by absorption

[SO, PRDSI (2010) 114028, PLB703 (2011) 588]
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QGSJET 11-04

@ nontrivial Mx-shape for
HMD - due to absorptive
effects (§ = M%/s)

@ crucial - impact parameter
dependence: stronger

wom g A absorption (nonlinear

10° 10° 0 107 : effects) at smaller b




Modification of Mx-dependence for SD by absorption

[SO, PRDSI (2010) 114028, PLB703 (2011) 588]

f©)

QGSJET 11-04

@ nontrivial Mx-shape for
HMD - due to absorptive
effects (§ = M%/s)

® crucial - impact parameter
dependence: stronger

womy g A absorption (nonlinear

10° 10° 0 107 : effects) at smaller b




Modification of Mx-dependence for SD by absorption

[SO, PRDSI (2010) 114028, PLB703 (2011) 588]
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Modification of Mx-dependence for SD by absorption

[SO, PRDSI (2010) 114028, PLB703 (2011) 588]
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QGSIJET |1-04
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l"‘.-..
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@ nontrivial shape for HMD:
due to absorptive effects

o steeper &-shape at large b:
weaker absorptive effects

o flatter &-shape at smaller b:
strong absorption

@ peripheral contribution
(steeper &-shape)
dominates for small My

o for large Mx:
'central’ and 'peripheral’
contributions comparable



What do we see in LHC data?

Agreement of the predicted ngl)) (Mx-shape and rate) with TOTEM

] My range, GeV <34 34-1100 34-7 7-350 3501100
TOTEM 262+2.17 65+13 ~18 ~33 ~14
QGSJET-II-04 3.9 7.2 1.9 3.9 1.5
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Predicted Mx-shape agrees with SD (CMS) & rap-gaps (ATLAS)
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What do we see in LHC data?

Predicted Mx-shape agrees with SD (CMS) & rap-gaps (ATLAS)
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@ rates of SD & rap-gaps: 30 —40% below CMS & ATLAS



Inelastic diffraction & cosmic ray composition studies

Xmax — best suited for CR composition studies

Hp inel diffr inel
@ predictions for X,.x depend on Op—zin* Op—air: Kpiair,

° G;f;,t/el can be reliably extrapolated thanks to LHC studies

(notably by TOTEM, ATLAS)

o oo impacts recalculation from pp to pA (AA)
inel _ 2 8 8 8 diffr
° 0, % due to inelastic screening (correlated with Spp

% K;;n—e;ir — due to small 'inelasticity’ of diffractive collisions

v




Inelastic diffraction & cosmic ray composition studies

Xmax — best suited for CR composition studies

et inel — diffr inel
o predictions for Xmax depend on 6., 6,50, K ..

° G;f;,t/el can be reliably extrapolated thanks to LHC studies

(notably by TOTEM, ATLAS)

° csg},ffr impacts recalculation from pp to pA (AA)
° G;)“elur — due to inelastic screening (correlated with & dlfff

% K;‘ﬂir — due to small 'inelasticity’ of diffractive coII|S|ons
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Impact of uncertainties of GIS);,) on Xmax

[SO, PRD89 (2014) 7, 074009]

@ Presently: serious tension between CMS & TOTEM
concerning diffraction rate in pp

TOTEM  CMS
My range, GeV  7—-350 12—394
c,) (AMx), mb  ~33 43406

— mb 0.42 0.62

@ = may be regarded as a characteristic uncertainty for GIS,E

o impact on Xpax & RMS(Xmax)?
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Two alternative model versions (tunes): SD+ & SD-

@ SD+: increased high mass diffraction (HMD) (larger r3p)
— to approach CMS results

@ slightly smaller LMD — to soften disagreement with TOTEM
@ SD-: smaller LMD (by 30%), same HMD

. tot/el - . .
@ similar Gp%/e & central particle production in both cases

Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS

] My range, GeV <34 34-1100 34—7 7-350 350—1100
TOTEM 2.62+2.17 65+13 ~18 ~33 ~1.4
option SD+ 3.2 8.2 1.8 4.7 1.7
option SD- 2.6 7.2 1.6 3.9 1.7

] CMS (Mx =12—394 GeV) option SD+ option SD- ‘
43406 37 31|
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Two alternative model versions (tunes): SD+ & SD-

@ SD+: increased high mass diffraction (HMD) (larger r3p)
— to approach CMS results
@ slightly smaller LMD — to soften disagreement with TOTEM

@ SD-: smaller LMD (by 30%), same HMD

. tot/el . . .
@ similar Gp(;,/e & central particle production in both cases
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Impact on Xmax & RMS(Xmax)

850

Xoax (@lcnl)
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Option SD-: smaller low mass diffraction

1

air

@ = smaller inelastic screening = larger G;J“_e

. : 2 inel ch
o smaller diffraction for proton-air = larger K'¢, N ;.

o = smaller Xy« (all effects work in the same direction):
AXmax = —IOg/cm2
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Impact on Xmax & RMS(Xmax)
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Option SD+:

@ opposite effects

@ but: minor impact on Xpax (AXmax < Sg/cmz)
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Impact on Xmax & RMS(Xmax)

Xoax (@lcnl)

@
=]

RMS(X,,) (g/crf)

40

Fe

20

Option SD+:

@ opposite effects
@ but: minor impact on Xpax (AXmax < Sg/cmz)
@ in both cases: minor impact on RMS(Xpay): < 3g/cm’




Impact on Xmax & RMS(Xmax)

Why larger Xmax differences with other models (e.g. EPOS-LHC)?

900 — —
F o HiRes-MIA m
850 o HiRes (2005) p s
' + Yakutsk 2001 -
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800 A Yakutsk 1993 1
- L e Auger (2013) i il
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sl | Lyl IO
10]7 1018 10[‘) 1‘120
Energy (eV)
[plot from T. Pierog]
@ to be discussed in the summary talk
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Forward production: neutrons

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]
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+ Large amount of high energy neutrons for n > 10.76 (only predicted by QGSJET)
mmp small inelasticity in the very forward region

v

How to understand the results?
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Forward neutron spectra in LHCF: different contributions
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@ main contribution: nondiffractive collisions

o for large xp - dominated by pion exchange mechanism
(RRP-contribution) [Kopeliovich et al., PRD91 (2015) 054030]
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Forward neutron spectra in LHCF: different contributions
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how to separate different contributions experimentally?



Forward neutron spectra: LHCF + ATLAS veto/trigger
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ATLAS to veto/trigger charged particles (p; > 0.5 GeV, |n| < 2.5)

@ veto removes ND almost completely!

@ = allows a clean detection of low mass diffraction
(impossible with other LHC detectors)

@ triggering activity in ATLAS removes most of diffraction

8 = neutron spectra measurement in ND events




Forward neutron spectra: LHCF + ATLAS veto/trigger
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@ veto removes ND almost completely!

@ = allows a clean detection of low mass diffraction
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@ triggering activity in ATLAS removes most of diffraction

8 = neutron spectra measurement in ND events
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Forward ne ctra: LHCF + ATLAS veto/trigger
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'Centrality’ dependence in pp: test of pp to p-air transition
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Require at least 1, 5, 10 charged particles in ATLAS (p; > 0.5 GeV)

@ enhanced multiple scattering

10

@ = strong suppression of forward neutron production
@ pion exchange goes away

o higher energy loss by the 'remnant’ state

@ important test for CR applications:
measure of the 'inelasticity’ in ND collisions

@ NB: ND p — air collision - like more 'central’ pp interaction
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'Centrality’ dependence in pp: test of pp to p-air transition

Compare QGSJET-1I-04 (solid lines) to SIBYLL 2.1 (dotted)
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@ order of magnitude differences

@ nearly same spectral shape in SIBYLL for all the triggers!
(forward spectra decoupled from central production)

@ = important discriminator between models
o



Forward production: w°

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]
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Forward production: w°

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

. F (Bro2<p, [Gevi<o4 |F ©04<p [GeVI<0.6
& L. L.
> 2
© F == F
S E E
=y b e i
% E L8 LHC (stat.+syst.) E
5 107 LHCf 1s=7TeV o i T DPMIETS08
4T} -y e - -~ QGSJET II-04
T J- Ldt=2.64+2.85nb S B sevzs
= . F g/ |
E 10,5 I I‘l i PYTHIA 8.185 S E |_‘
Lo E 11 E EPOS LHC HE q
B by b b B vy b b e s by Py b

(d) 0.6 <p_[GeV] <08 (e)0.8<p [GeV]<1.0 | o Good agreement of

g1 QGSJET I1-04

& 101 k - EPOS-LHC harder at P, > 2
5 TeV

Q. —2

T 1 + DPMJET and Pythia OK at
%5 107° P <02GeVandP,<1.6
Lu@ 104 TeV, harder at P,>16TeV
5 « SIBYLL similar to DPMJET

10° il ‘e | and PYTHIAincreasing P,

How the spectra should evolve from pp to p-air?

@ NB: forward spectra of ©* - of importance for X!



'Centrality’ dependence as a test for pp to p-air transition
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@ increasing 'centrality’ of pp collisions by ATLAS triggers:
@ = enhanced multiple scattering
@ = softer pion spectra
o clear violation of the limiting fragmentation

@ NB: same mechanism for violation of the Feynman scaling
(increase of multiple scattering with energy)
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@ increasing 'centrality’ of pp collisions by ATLAS triggers:
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@ = softer pion spectra
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@ NB: same mechanism for violation of the Feynman scaling
(increase of multiple scattering with energy)



'Centrality’ dependence as a test for pp to p-air transition

Compare QGSJET-1I-04 (solid lines) to SIBYLL 2.1 (dotted)
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@ almost perfect limiting fragmentation in SIBYLL

o related: nearly perfect Feynman scaling in that model
o NB: TOTEM & CMS ma‘ test this with charﬁed hadrons




'Centrality’ dependence as a test for pp to p-air transition

Compare QGSJET-1I-04 (solid lines) to SIBYLL 2.1 (dotted)
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@ almost perfect limiting fragmentation in SIBYLL

o related: nearly perfect Feynman scaling in that model
o NB: TOTEM & CMS ma‘ test this with charged hadrons




© Development of QGSJET-II completed; latest update included
o treatment of all significant PP-interaction contributions
o calibration to LHC data (notably to G,[J(;,t/el by TOTEM)

¢ dominance of m-exchange for charge exchange in mtp

@ Further: towards pQCD treatment of nonlinear effects

& not a short-term project

© LHC data generally support the approach of the model
@ however, indications in the data:
@ for smaller low mass and larger high mass diffraction
@ for larger contribution of m-exchange in pp collisions
& both are a matter of fine-tuning but more decisive data needed
9 e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS

@ indications for stronger saturation effects in central pA & AA
= restrictions for model applicability
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O Present treatment of charge exchange in mp (TA):
likely the upper bound for N, in EAS
o NAG61 results on forward p - consistent with earlier data
@ isospin invariance requires a similar mechanism for p*

@ though: other Reggeon trajectories potentially important

© Estimated uncertainties of QGSJET-I1-04 predictions for EAS:
o ARMS (Xpax) =~ 3 g/cm?
o AXpax =~ £10 g/cm?

+0%
° ANy:{ _59



O Present treatment of charge exchange in mp (TA):
likely the upper bound for N, in EAS
o NAG61 results on forward p - consistent with earlier data
@ isospin invariance requires a similar mechanism for p*

@ though: other Reggeon trajectories potentially important

© Estimated uncertainties of QGSJET-I1-04 predictions for EAS:
o ARMS (Xpax) =~ 3 g/cm?
o AXpax =~ £10 g/cm?

+0%
° ANy:{ _59



Extra slides



Potential impact of diffraction uncertainties on CR studies

@ Fit of Telescope Array data by p+Fe CR composition
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Potential impact of diffraction uncertainties on CR studies

@ Fit of Telescope Array data by p+Fe CR composition
g E=18.2-18.4 IgE=184-18.6 IgE=186-18.8 Ig E=18.8-19.0

prob.

Fit quality for different proton abundances d, (dr. =1 —d,)

- QGSIET-11-04 - option SD+

y/dof

@ option SD+: pure proton composition excluded

@ option SD-: almost pure proton composition is o.k.
(astrophysically favorable scenario)
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