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Tracking BasicsTracking Basics
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And in Particle PhysicsAnd in Particle Physics
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A typical particle physics detectorA typical particle physics detector
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Reconstructing ParticlesReconstructing Particles

E2 − p⃗2 = m2

Momentum of
charged particles
measured with the 

Tracker

Energy of 
particles, 

measured with the 
Calorimeter

Particle mass
Inferred from 

Particle ID
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Tracking in Particle PhysicsTracking in Particle Physics

● Basic idea
– Bend charged particle 

tracks in magnetic field
– Add Position-sensitive 

detectors in the volume 
inside the magnet

– Record a few hits
– Reconstruct the helices

● That's where silicon 
detectors enter the game 
– Low mass and high 

resolution
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Tracking resolutionTracking resolution

● Ultimately Tracking resolution driven by
▬ Single Point Resolution
▬ Multiple-Scattering

● Hence
▬

● Notes
▬ Multiple Scattering dominates at low momenta (~ < 10-

20 GeV)
▬ At higher momenta the single-point resolution becomes 

the limiting factor (~ > 50 GeV)

σTrack=√σHit
2 +σMS

2
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Silicon trackers – A bit of historySilicon trackers – A bit of history

DELPHI
O(1m2)

CDF
O(10m2)

CMS
O(100m2)

1997 2008



+

Marcel Stanitzki 15/02/16  10

DELPHI Vertex DetectorDELPHI Vertex Detector
● DELPHI Experiment

– 1989-2000 @ LEP
● Silicon Vertex Detector

– Finalized 1997
– Largest at the time

● Three layers
– r=63 mm, 90 mm  and 109 

mm
– Forward pixels
– 3D Hits

● Intended for precision 
vertexing
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First Application : VertexingFirst Application : Vertexing

Secondary
 Vertex

Primary
Vertex
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The CDF Silicon DetectorThe CDF Silicon Detector

Layer00 SVX II ISL               

● CDF Detector
– Teavtron @ Fermilab 

● Design Goals (compared to Run-I)
– Increased acceptance
– Silicon data for L2 Trigger (unique)
– Higher resolution for vertices (~ 30 

μm)
● Requires versatile Silicon detector

– Three Components: SVX II, ISL, L00
– 7-8 layers, 722432 readout channels
– 3D Hit information
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Triggering Triggering 

● Triggers are essential at a 
hadron collider like the 
Tevatron
– Bandwidth-limited, not event 

limited
● Idea: Trigger on secondary 

vertices
– Larger and pure b-physics 

sample
● Requires  

– Silicon detector to be part of 
the trigger readout (very fast 
readout)

– Track reconstruction in 
hardware
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        BB
ss
 Oscillations Oscillations

Δm
s
     =  17.77 ± 0.10(stat) ± 0.07(sys)  
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CMS All-Silicon TrackerCMS All-Silicon Tracker

● CMS pixel detector,
– 65 million pixels
– Three  cylindrical layers at 4 cm, 7 cm and 

11 cm and disks 
● CMS Tracker

– 4 inner barrel (TIB) layers 
– 2 inner endcaps (TID) with3 small discs 

each
– 6 outer barrel (TOB) layers
– Two endcaps (TEC)  with 9 discs each
– 15,200 highly sensitive modules 
– Total of 200 m2 with 10 million detector 

strips read by 80,000 microelectronic 
chips

● First All-silicon tracker ever
– Data taking started in 2008
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Full-Silicon trackingFull-Silicon tracking

CMS

● Full Silicon Stand-alone Tracking
– A first in HEP
– No seeding from a  tracking chamber anymore
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Particle ID using dE/dxParticle ID using dE/dx

● The folklore
– Can't do dE/dx with silicon tracker
– ATLAS and CMS have shown otherwise (with  “low 

resolution” front-ends)
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Todays ChallengesTodays Challenges
From HL-LHC to ILCFrom HL-LHC to ILC
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Upcoming ChallengesUpcoming Challenges

● HL-LHC Upgrade at CERN
– pp collisons at 13 TeV
– Start Data taking in 2025
– Approved project

● ILC
– e+e- collision at 500 GeV
– TDR delivered, currently in the approval process
– Start Data Taking ~ 2030

● Some other proposals
– On the 2030-2040+ timescale
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HL-LHC UpgradeHL-LHC Upgrade

● Start of HL-LHC
– a.k.a Phase-II

● Compared to Nominal LHC
– Factor 5 initial luminosity
– Luminosity leveling
– Number of interactions 

55 → 140
● Radiation damage is an 

issue
– 1E16/1E15 neq

LHC

HL-LHC
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The ILC ProjectThe ILC Project
● The ILC (International Linear Collider) in Japan

– A 500 GeV (baseline) GeV e+e- Linear Collider
– Clear Upgrade Path to 1 TeV
– Beam Polarization

● Interaction Region with two detectors
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HL-LHC vs ILCHL-LHC vs ILC

ATLAS
<μ>=140

ILC  tt event

Moving from 140 interactions per 25 ns crossing to ~1 event/train 
Tracker design is also machine-driven



+

Marcel Stanitzki 15/02/16  23

Common ChallengesCommon Challenges

Physics and wishes Requirements 
● Higher granularity
● Larger Coverage
● Higher Rate
● Higher Luminosity
● Less Multiple Scattering

 Silicon sensors can deliver the performance needed!
 Need to change “basic design paradigms” to reduce 
material
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Design MatrixDesign Matrix

Larger AreaLarger Area

Higher GranularityHigher Granularity

Higher RateHigher Rate

More
Radiation Hardness

More
Radiation Hardness

Less
Multiple Scattering

Less
Multiple Scattering

Cost

Power

Cooling

Cabling

MATERIAL
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Cost considerationsCost considerations

● Increasing Area and Granularity
– Number of Channels increases 

● Present day and time

● Reducing Cost per channel is essential
● How ?

– Using industry-standard technologies wherever possible
– Move away from hand-made sensors and hand-crafted 

modules

DetectorCost=N Channels⋅Cost perChannel=const
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A “typical” Silicon Tracker ModuleA “typical” Silicon Tracker Module
Silicon Strip 
Sensor

Cooling 
Pipes

Data/Clocks 
(optical)

Low Voltage 

High Voltage 

Hybrid PCB

Readout ASIC

Support 
Structure
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From Modules to StavesFrom Modules to Staves
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Silicon
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ASIC designsASIC designs

● The main power driver is  LV consumption
– ASICS, data links,

● Example ATLAS Phase-II Upgrade
– ATLAS Barrel Hybrid  with 2560 channels

● Switched from IBM 250 nm to IBM 130 nm technology
– ABCN25 chip: IBM 250 nm 128 channels
– ABC130 chip: IBM 130 nm  256 channels

● Benefits for a barrel hybrid
●  ~ 20 W using ABCN25 
●  ~ 3W using ABC130 
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LV Powering SchemesLV Powering Schemes

● Current LV needs
– Chunky cables to transport 

3.3V/1.5V with several 
amps

– Loads of them
● Two ways out

– Daisy-chaining
– High Voltage-in, local 

conversion
● Both ideas have 

successfully been pursued

● Serial Powering
– Every module on a stave 

is daisy-chained
– Reliability worries

● DC-DC converters
– Input 10 V
– Output 1.5 V
– Industry standard

● But not for rad-had & 
Multi-Tesla field 
application
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HV MultiplexingHV Multiplexing

● A similar idea for distributing HV to each sensor
● Instead one common HV “bus” with individual switches 

per module
– Retain capability to bias individual modules 
– Requires rad-hard High-Voltage transistors that can  switch 

500V +
– Active R&D to qualify circuits

●  HV distribution is a lot easier
● Drawback

– All Modules need to use same bias voltage in the simplest 
approach
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Optical LinksOptical Links
● Rad-Hard High speed optical 

links are key for HL-LHC
– Common HL-LHC wide 

development (“GBT”) 
● Versatile Link

– Rad-Hard optical link with up 
to 10 Gbps

● GBT
– Driver chip providing 

multiplexing, error correction, 
etc

● Eliminates a lot of individual 
links

17
 m

m

17 mm

Total height including solder balls: ~3 mm

4.
3 

m
m

4.3 mm
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Material BudgetMaterial Budget

R&D on Services, 
Mechanics, Cooling

ATLAS

ATLAS ITK Phase II
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Micro-Channel CoolingMicro-Channel Cooling

● Idea
– Instead cooling the 

mechanical structure
– Cool sensor directly
– Higher efficiency → Less 

material
● Prototype :Microchannels 

etched into 4” silicon 
wafer
– Sixty 100 μm x 100 μm 

channels connected via 
manifolds
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Power Pulsing (I)Power Pulsing (I)

● ILC environment is very different compared to the LHC 
(or any other synchrotron)
– Bunch spacing of ~ 554 ns (baseline)
– 1312 bunches in 1 ms
– 199 ms quiet time

● Readout during quiet time is possible
● In the idle time, power off electronics
● Big Impact on detector design

1312
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Power Pulsing (II)Power Pulsing (II)

● With a duty cycle of 1:200 
– Assume a factor 100 power reduction

● This is a major gain
– Eliminate a dedicated cooling system
– Gas cooling for a Tracker can be sufficient

● Technically no problem to shut down the power-
hungry  front-end
– Has been demonstrated with several ASICS
– System questions remain, what happens if one power-

pulses a few thousand chips...
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Eliminating HybridsEliminating Hybrids
● Hybrid PCBS hosting the 

readout ASICS
– Wire-bonding strips to 

the ASICS
– Significant amount of 

material
● Alternative

– Bump-Bonding the 
ASICS directly to the 
strips

– Double-metal layers for 
the routing

ATLAS

SiD
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Material BudgetMaterial Budget

R&D on Services, 
Mechanics, Cooling

Power pulsing
No cooling

ATLAS

SiD

ATLAS ITK Phase II
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Up to nowUp to now

● Hard work on  the “Services”
– Significant gains through-out

● But as always no free lunch
– Losing granularity in detector control
– More complexity

● But 
– Still 300 micron Silicon sensors (need two for a “3D space 

point”
– 0.7 % X0 

● Next stop on our “reduce material” tour



+

Marcel Stanitzki 15/02/16  39

Sensor ThinningSensor Thinning

● Obvious Idea
– Make the sensor thinner

● But unfortunately 
– Signal ~ thickness
– Below 50 micron silicon 

becomes floppy
● LHC Upgrades

– 200 micron seems a 
good number

– 33 % less material
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From Strips to Strixels and pixelsFrom Strips to Strixels and pixels

● “Classic” Silicon trackers
– Based on strip sensors
– Excellent rφ resolution ( 20 micron or less) and  mediocre 

z resolution driven by strip length
● For a 3D space point

– Either double-sided sensors (  rφ and rz strips)
– Small-Angle-Stereo configurations (usually two sensors)

● Obvious way out
– Very short strips (strixels)
– Pixels right away
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Monolithic Active Pixel SensorsMonolithic Active Pixel Sensors
● CMOS 

– Standard industry processes
● Baseline: Charge is 

collected by diffusion
– Slow > 100 ns

● Readout is fully integrated
– Standard MAPS limited to 

NMOS
● Thin Active layers

– 20 microns
● Basic MAPS cell→The 3T array
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Overcoming limitationsOvercoming limitations

Full CMOS Capability
● Baseline MAPS limited 

by NMOS only
– Full CMOS highly 

desirable
● Solution

– Encapsulating the PMOS 
 with a deep p-implant

● By now established 
technology

Charge collection
● Diffusion is inherently 

slow and radiation soft
● Need to make MAPS that 

collect charge by drift
– Using high-resistivity epi-

layers and or High Voltage 
● Both HR-CMOS and HV-

CMOS are considered as 
options  for HL-LHC 
Phase-II upgrades
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Wafer-scale devicesWafer-scale devices

● MAPS sizes used to be 
limited to the Reticule 
size
– 2.5 x 2.5 cm approx

● Stitching sensors has 
become possible now
– Wafer size is now the 

limited
– CMOS is typically using 

300 mm wafers 

LASENA, RAL
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3D Technologies3D Technologies

● Component Technologies
– Through Silicon Vias (TSV)
– Bonding: Oxide-, polymer-, 

metal-, or adhesive , Wafer-
Wafer, Chip-Wafer or Chip-Chip

– Wafer thinning
– Back-side processing: 

metalization and patterning
● Three Chips made by 

Fermilab
– VIP(ILC), VICTR(CMS), and 

VIPIC(X-Ray)
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VIP for ILC VIP for ILC 

● Features
– 192 × 192 array of 24x24 µm2 

pixels
– 8 bit digital time stamp
– Readout between ILC bunch 

trains of sparsified data
– Analog signal output with CDS
– Analog information available 

for improved resolution
– Serial output bus
– Polarity switch for collection 

of e- or h+
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On the Side...On the Side...
● New GPU's feature

– High-Bandwidth DRAM
– Interposers

● Enter Mainstream GPU 
market
– AMD now
– Nvidia in 2016

● It's all 3D Integration ..
– No niche application 

anymore
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4D Tracking4D Tracking

● The Hit timing as additional 
information

● Classic 
– Time-of-flight detectors

● Extend the idea to full 
tracking
– Pattern recognition, tracking 

& vertexing  including time 
information

● e.g. ILC
– Suppress beam background 

tracks 

● Realizations
– Specialized silicon pad 

detectors
– SiPM's

● E.g.  Silicon Pad 
Detectors
– Special Gain layer
– Resolution  ~ 100-200 ps
– Prefers thin devices
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Doing it all-silicon trackingDoing it all-silicon tracking

CMS Upgrade
HL-LHC

ATLAS Upgrade
HL-LHC

SiD
ILC
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Next stopNext stop
CalorimetryCalorimetry
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Silicon sensors for CalorimetersSilicon sensors for Calorimeters

● Not exactly a new idea
– e.g. OPAL Luminosity 

monitor: Silicon tungsten 
sandwich

– Small devices
● SiW  ECAL renaissance

– Driven by ILC  detector 
concepts: SiD and ILC

– Ideal for Particle Flow 
paradigm

● Now picked up by CMS

TrackTrack PhotonsPhotons

Neutral Neutral 
HadronHadron
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The SiD ECALThe SiD ECAL

● Silicon-Tungsten ECAL
– Both Barrel and Endcaps
– 20+ 10  Layers
– 2.5 mm/ 5 mm W  with 

1.25 mm readout gap
– Readout Sensor bump-

bonded to silicon
– 1400 m2 in total

● First final prototype set-up
– Successful Test beam in 

2014
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CMS HGCAL for HL-LHCCMS HGCAL for HL-LHC

● EE: Endcap ECAL
– 28 layers of tungsten/copper 

absorber and silicon sensors
– 26 X0/ 1 Λ thick,  380 m2 silicon 4.3 

M channels
● FH: Front HCAL

– 12 layers of brass absorber/silicon 
sensors

– 3.5Λ thick, 209 m2 silicon 1.8 M 
channels

● BH: Back HCAL
– 12 layers of brass absorber and 

(radiation-hard) plastic scintillator
– 5  Λ thick, 1K–10K channels
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Large Systems Large Systems 
some lessons learnedsome lessons learned

● Services to not scale well
– Large systems require new approaches
– Maybe  not the “sexy” part, but it matters 

● Going from hand-crafting to industrial production
– Quantity & Yield do matter
– Re-working is not an option

● Overall system approach
– A detector is an integrated system not a mere assembly 

of individual subdetectors
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ConclusionsConclusions

● Silicon detectors have not reached the “end of the road”
– In fact, they have only just started

● Next generation trackers will provide
– Unprecedented performance with less material
– Very attractive cost per channel

● Silicon will remain the dominant technology for tracking 
detectors
–  Currently no serious contender in sight

● Calorimetry is next 
– CMS HGCAL, SiD, ILD, CALICE 
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