

Introduction

Cys.

2

2

30

TC.

Tracking Basics

And in Particle Physics

A typical particle physics detector §

particles, measured with the Calorimeter

Particle mass Inferred from Particle ID

Tracking in Particle Physics

Basic idea

- Bend charged particle tracks in magnetic field
- Add Position-sensitive detectors in the volume inside the magnet
- Record a few hits
- Reconstruct the helices
- That's where silicon detectors enter the game
 - Low mass and high resolution

Tracking resolution

Ultimately Tracking resolution driven by

- Single Point Resolution
- Multiple-Scattering
- Hence

-
$$\sigma_{Track} = \sqrt{\sigma_{Hit}^2 + \sigma_{MS}^2}$$

- Notes
 - Multiple Scattering dominates at low momenta (~ < 10-20 GeV)
 - At higher momenta the single-point resolution becomes the limiting factor (~ > 50 GeV)

Silicon trackers – A bit of history

DELPHI Vertex Detector

- DELPHI Experiment
 - 1989-2000 @ LEP
- Silicon Vertex Detector
 - Finalized 1997
 - Largest at the time
- Three layers
 - r=63 mm, 90 mm and 109 mm
 - Forward pixels
 - 3D Hits
- Intended for precision vertexing

First Application : Vertexing

The CDF Silicon Detector

CDF Detector

- Teavtron @ Fermilab
- Design Goals (compared to Run-I)
 - Increased acceptance
 - Silicon data for L2 Trigger (unique)
 - Higher resolution for vertices (~ 30 μm)
- Requires versatile Silicon detector
 - Three Components: SVX II, ISL, LOO
 - 7-8 layers, 722432 readout channels
 - 3D Hit information

Triggering

- Triggers are essential at a hadron collider like the Tevatron
 - Bandwidth-limited, not event limited
- Idea: Trigger on secondary vertices
 - Larger and pure b-physics sample
 - Requires
 - Silicon detector to be part of the trigger readout (very fast readout)
 - Track reconstruction in hardware

B_s Oscillations

 $\Delta m_s = 17.77 \pm 0.10(stat) \pm 0.07(sys)$

CMS All-Silicon Tracker

- CMS pixel detector,
 - 65 million pixels
 - Three cylindrical layers at 4 cm, 7 cm and 11 cm and disks
 - CMS Tracker
 - 4 inner barrel (TIB) layers
 - 2 inner endcaps (TID) with3 small discs each
 - 6 outer barrel (TOB) layers
 - Two endcaps (TEC) with 9 discs each
 - 15,200 highly sensitive modules
 - Total of 200 m² with 10 million detector strips read by 80,000 microelectronic chips
- First All-silicon tracker ever
 - Data taking started in 2008

Full-Silicon tracking

Full Silicon Stand-alone Tracking

- A first in HEP
- No seeding from a tracking chamber anymore

Particle ID using dE/dx

• The folklore

- Can't do dE/dx with silicon tracker
- ATLAS and CMS have shown otherwise (with "low resolution" front-ends)

From FIL-LFIC to JLC

MINING MINING

Upcoming Challenges

HL-LHC Upgrade at CERN

- pp collisons at 13 TeV
- Start Data taking in 2025
- Approved project

• ILC

- e+e- collision at 500 GeV
- TDR delivered, currently in the approval process
- Start Data Taking ~ 2030
- Some other proposals
 - On the 2030-2040+ timescale

HL-LHC Upgrade

Start of HL-LHC

– a.k.a Phase-II

Compared to Nominal LHC

- Factor 5 initial luminosity
- Luminosity leveling
- Number of interactions $55 \rightarrow 140$
- Radiation damage is an issue
 - 1E16/1E15 neq

The ILC Project

- The ILC (International Linear Collider) in Japan
 - A 500 GeV (baseline) GeV e+e- Linear Collider
 - Clear Upgrade Path to 1 TeV
 - Beam Polarization
- Interaction Region with two detectors

HL-LHC vs ILC

Moving from 140 interactions per 25 ns crossing to ~1 event/train Tracker design is also machine-driven

Common Challenges

Physics and wishes Requirements

- Higher granularity
- Larger Coverage
- Higher Rate
- Higher Luminosity
- Less Multiple Scattering

Silicon sensors can deliver the performance needed! Need to change "basic design paradigms" to reduce material

Cost considerations

Increasing Area and Granularity

- Number of Channels increases
- Present day and time

 $Detector Cost = N_{Channels} \cdot Cost_{perChannel} = const$

- Reducing Cost per channel is essential How ?
 - Using industry-standard technologies wherever possible
 - Move away from hand-made sensors and hand-crafted modules

From Modules to Staves

ASIC designs

The main power driver is LV consumption

- ASICS, data links,
- Example ATLAS Phase-II Upgrade
 - ATLAS Barrel Hybrid with 2560 channels
- Switched from IBM 250 nm to IBM 130 nm technology
 - ABCN25 chip: IBM 250 nm 128 channels
 - ABC130 chip: IBM 130 nm 256 channels
- Benefits for a barrel hybrid
 - ~ 20 W using ABCN25
- ~ 3W using ABC130

LV Powering Schemes

Current LV needs

- Chunky cables to transport 3.3V/1.5V with several amps
- Loads of them
- Two ways out
 - Daisy-chaining
 - High Voltage-in, local conversion
- Both ideas have successfully been pursued

Serial Powering

- Every module on a stave is daisy-chained
- Reliability worries
- DC-DC converters
 - Input 10 V
 - Output 1.5 V
 - Industry standard
 - But not for rad-had & Multi-Tesla field application

HV Multiplexing

- A similar idea for distributing HV to each sensor
- Instead one common HV "bus" with individual switches per module
 - Retain capability to bias individual modules
 - Requires rad-hard High-Voltage transistors that can switch 500V +
 - Active R&D to qualify circuits
- HV distribution is a lot easier
- Drawback
 - All Modules need to use same bias voltage in the simplest approach

Optical Links

- Rad-Hard High speed optical links are key for HL-LHC
 - Common HL-LHC wide development ("GBT")
- Versatile Link
 - Rad-Hard optical link with up to 10 Gbps
 - GBT
 - Driver chip providing multiplexing, error correction, etc
- Eliminates a lot of individual links

Marcel Stanitzki 15/02/16

Material Budget

Marcel Stanitzki 15/02/16

Micro-Channel Cooling

- Instead cooling the mechanical structure
- Cool sensor directly
- Higher efficiency → Less
 material
- Prototype :Microchannels etched into 4" silicon wafer
 - Sixty 100 µm x 100 µm channels connected via manifolds

Power Pulsing (I)

 ILC environment is very different compared to the LHC (or any other synchrotron)

- Bunch spacing of ~ 554 ns (baseline)
- 1312 bunches in 1 ms
- 199 ms quiet time
- Readout during quiet time is possible
- In the idle time, power off electronics
- Big Impact on detector design

Power Pulsing (II)

• With a duty cycle of 1:200

- Assume a factor 100 power reduction
- This is a major gain
 - Eliminate a dedicated cooling system
 - Gas cooling for a Tracker can be sufficient
- Technically no problem to shut down the powerhungry front-end
 - Has been demonstrated with several ASICS
 - System questions remain, what happens if one powerpulses a few thousand chips...

Eliminating Hybrids

Hybrid PCBS hosting the readout ASICS

- Wire-bonding strips to the ASICS
- Significant amount of material
- Alternative
 - Bump-Bonding the ASICS directly to the strips
 - Double-metal layers for the routing

R&D on Services, Mechanics, Cooling

Up to now

- Hard work on the "Services"
 - Significant gains through-out
 - But as always no free lunch
 - Losing granularity in detector control
 - More complexity
 - But
 - Still 300 micron Silicon sensors (need two for a "3D space point"
 - 0.7 % X₀
- Next stop on our "reduce material" tour

Sensor Thinning

Obvious Idea

- Make the sensor thinner
- But unfortunately
 - Signal ~ thickness
 - Below 50 micron silicon becomes floppy
- LHC Upgrades
 - 200 micron seems a good number
 - 33 % less material

From Strips to Strixels and pixels • 🕄

"Classic" Silicon trackers

- Based on strip sensors
- Excellent rφ resolution (20 micron or less) and mediocre z resolution driven by strip length

For a 3D space point

- Either double-sided sensors (rφ and rz strips)
- Small-Angle-Stereo configurations (usually two sensors)
 Obvious way out
 - Very short strips (strixels)
 - Pixels right away

Monolithic Active Pixel Sensors

CMOS

- Standard industry processes
- Baseline: Charge is collected by diffusion
 - Slow > 100 ns
- Readout is fully integrated
 - Standard MAPS limited to NMOS
- Thin Active layers
 - 20 microns
- Basic MAPS cell→The 3T array

Overcoming limitations

Full CMOS Capability

- Baseline MAPS limited by NMOS only
 - Full CMOS highly desirable
 - Solution
- Encapsulating the PMOS with a deep p-implant
 By now established technology

Charge collection

- Diffusion is inherently slow and radiation soft
- Need to make MAPS that collect charge by drift
 - Using high-resistivity epilayers and or High Voltage
- Both HR-CMOS and HV-CMOS are considered as options for HL-LHC Phase-II upgrades

Wafer-scale devices

- MAPS sizes used to be limited to the Reticule size
 - 2.5 x 2.5 cm approx
- Stitching sensors has become possible now
 - Wafer size is now the limited
 - CMOS is typically using 300 mm wafers

3D Technologies

Component Technologies

- Through Silicon Vias (TSV)
- Bonding: Oxide-, polymer-, metal-, or adhesive , Wafer-Wafer, Chip-Wafer or Chip-Chip
- Wafer thinning
- Back-side processing: metalization and patterning
- Three Chips made by Fermilab
 - VIP(ILC), VICTR(CMS), and VIPIC(X-Ray)

VIP for ILC

Features

- 192 × 192 array of 24x24 μ m² pixels
- 8 bit digital time stamp
- Readout between ILC bunch trains of sparsified data
- Analog signal output with CDS
- Analog information available for improved resolution
- Serial output bus
- Polarity switch for collection of e- or h+

On the Side...

Η

- New GPU's feature
 - High-Bandwidth DRAM
 - Interposers
- Enter Mainstream GPU market
 - AMD now
 - Nvidia in 2016
- It's all 3D Integration ..
 - No niche application anymore

4D Tracking

- The Hit timing as additional information
- Classic
 - Time-of-flight detectors
- Extend the idea to full tracking
 - Pattern recognition, tracking & vertexing including time information

• e.g. ILC

 Suppress beam background tracks Realizations

 Specialized silicon pad detectors

– SiPM's

- E.g. Silicon Pad Detectors
 - Special Gain layer
 - Resolution ~ 100-200 ps
 - Prefers thin devices

Doing it all-silicon tracking

CMS Upgrade HL-LHC

ATLAS Upgrade HL-LHC

SiD ILC

Marcel Stanitzki 15/02/16

Not exactly a new idea

- e.g. OPAL Luminosity monitor: Silicon tungsten sandwich
- Small devices

SiW ECAL renaissance

- Driven by ILC detector concepts: SiD and ILC
- Ideal for Particle Flow paradigm
- Now picked up by CMS

Silicon sensors for Calorimeters

The SiD ECAL

- Silicon-Tungsten ECAL
 - Both Barrel and Endcaps
 - 20+ 10 Layers
 - 2.5 mm/ 5 mm W with1.25 mm readout gap
 - Readout Sensor bumpbonded to silicon
 - 1400 m² in total
- First final prototype set-up
 - Successful Test beam in 2014

CMS HGCAL for HL-LHC

EE: Endcap ECAL

- 28 layers of tungsten/copper absorber and silicon sensors
- 26 X₀/ 1 Λ thick, 380 m² silicon 4.3
 M channels
- FH: Front HCAL
 - 12 layers of brass absorber/silicon sensors
 - 3.5A thick, 209 m² silicon 1.8 M channels
 - BH: Back HCAL
 - 12 layers of brass absorber and (radiation-hard) plastic scintillator
 - 5 Λ thick, 1K–10K channels

Large Systems some lessons learned

Services to not scale well

- Large systems require new approaches
- Maybe not the "sexy" part, but it matters
- Going from hand-crafting to industrial production
 - Quantity & Yield do matter
 - Re-working is not an option

Overall system approach

 A detector is an integrated system not a mere assembly of individual subdetectors

Conclusions

Silicon detectors have not reached the "end of the road"

- In fact, they have only just started
- Next generation trackers will provide
 - Unprecedented performance with less material
 - Very attractive cost per channel
- Silicon will remain the dominant technology for tracking detectors
 - Currently no serious contender in sight
- Calorimetry is next
 - CMS HGCAL, SID, ILD, CALICE

