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Topics 

• Near-infrared (0.6 – 5 µm) detector arrays in HgCdTe 
 

• Mid-infrared (5 – 28 µm) detector arrays in Si:As 
 

• Use of these devices in JWST* instruments  

* The James Webb Space Telescope is a 6.5-m cooled (40K) telescope to be 
launched in 2018, built as a collaboration among NASA and the European and 

Canadian Space Agencies. 



• Need high resistance to suppress Johnson noise 
• At the diode junction, impurity charge carriers migrate to fill bonds 
• Creates a depletion region with no free charge carriers 
• Also results in a contact potential – a voltage that sweeps any free charge 
carriers across the junction region -- ∼ 0.4 V for 2.5 µm detector 
• Bandgap is energy needed to break a bond in the crystal – as in process of 
photon detection 

JWST Near-Infrared Arrays Use HgCdTe Photodiodes 
provided by Teledyne Imaging Systems 

Why use photodiodes? 



Operation of a HgCdTe Photodiode Pixel 
• For infrared detection, need small 
bandgap material! 
• HgCdTe grown by molecular beam 
epitaxy (MBE): BG of 0.7 – 0.1 eV 
• After hybridized to the readout (for 
strength) the substrate is removed 
for good quantum efficiency (QE) at 
short wavelengths 
• Photon is absorbed in n-type layer 
if its energy is greater than the 
bandgap energy  
• Photon absorption frees an 
electron and creates a hole 
• Hole diffuses until gets swept 
across the junction by the contact 
potential 
• Cap layer can have larger band gap 
to repel holes, pushing them toward 
junction 
• Output to amplifier at metallized 
contact 



Have Excellent Broadband Quantum Efficiency 
requires substrate removal 



Arrays Are Buttable on Three Sides 

Arrays in all three near-IR instruments, fully tested and ready for launch 
Flight packaging for NIRCam at U. of Arizona under Rick Schnurr and Ken Don 



Overall Properties are Excellent 

Format 2048 X 2048 

Wavelength range 0.6 – 2.5 µm 

Operating temperature < 80 K 

Pixel size 18 µm 

Read noise 6 e rms 

Dark current ∼ 0.002 e/s 

Quantum efficiency > 80% 

Nominal bias 0.25 V 

Well capacity 90,000 e 



Spectacular Performance of HgCdTe Can Be 
Maintained with 5µm Cutoff Detectors 

Cutoff 
wavelength 

Dark current 
(e/s) 

Read noise 
(e rms) 

2.5 µm 0.002 + 0.002 6.3 

5 µm 0.036 + 0.005 9.1 

The 5 µm devices, 
supplied by Teledyne 
Imaging Systems, are used 
in all three of the shorter 
wavelength JWST 
instruments. 

Longer wavelengths by changing x in  
Hg1-x Cdx Te 



Raytheon also 
manufactures high 
performance 
HgCdTe. Avalanche 
diodes from, e.g., 
DRS, Raytheon, 
Sofradir, Selex.  
InSb is also useful 
where lower 
performance is OK 
and you do not have 
a very wealthy 
friend. See, e.g., L3-
Cincinnati 
Electronics.  

HgCdTe Technology Can Be Pushed to Somewhat 
Longer Wavelengths 



But There Is a Limit! 
• Tests are about to begin on a 13 µm cutoff array, operating at ∼ 30K (Judy 
Pipher and Craig McMurtry, private communication) 
• But performance is not going to approach that with 2.5 µm devices 
• There are three issues 

• Process control for accurate bandgap energy becomes very critical 
(below right) 
• Material becomes soft and fragile 
• Benefit from diode  
junction decreases  
with decreasing  
bandgap* 

Hg1-x Cdx Te 

 *Contact potential is  
proportional to bandgap 
and hence inversely  
proportional to cutoff  
wavelength! The internal 
diode field is proportional to 
the contact potential. 



Solution: Use Extrinsic 
(doped) Material 

• The missing bonds (to left) require 
far less energy to free charge 
carriers 
• But the impurity levels need to be 
low to limit dark current, so the 
photon absorption is not efficient 

• Detector might be as to the right 
• Must be operated very cold 
• Large (for good absorption) 
• Need high resistance to suppress Johnson 
noise 
 

• Result is very long RC time constant 
• Example: 20 X 20 µm pixel, 500 µm thick, 
dark current 30 e/s will have τ ∼ 100 s! 
• This leads to prompt (from charge carrier 
drift) response and slow (from RC 
adjustment in detector to changes 
• And a bunch of really challenging 
calibration issues  



Nonetheless: 
 

32 X 32 Ge:Ga 
Detector Array 

for MIPS on 
Spitzer 

This is pretty 
cumbersome – is 
there some other 
approach, at least 
for wavelengths 
not too far beyond 
10 µm? 



Si:As Impurity Band Conduction Detectors 
• Carried on transparent silicon substrate 
• High resistance is supplied by blocking layer of much purer material 
• Electric field (to far right grey scale) imposed by contact penetrates IR-active layer and 
causes photoelectrons to drift to contact 
• Readout by amplifier-per-detector, similar to HgCdTe arrays 
 

• We will discuss this detector type with specific reference to the MIRI/JWST devices* 

* Arrays made by Raytheon Vision Systems & have strong heritage to those used in IRAC/Spitzer 



Low Dark Current Because Blocking Layer Has No Impurity Band 
• Electrons must be elevated to conduction band to get to contact 
• This sets limit on impurity concentration in IR-active layer, to keep band narrow enough 
• MIRI detectors have 7 X 1017 As cm-3, approaching the limit for good detectors 

• About 100 times higher than is permissible without a blocking layer 
• Infrared active layer can be only 30-35 µm thick with good absorption  



• Arsenic is a donor impurity; acceptor impurities in IR layer produce space charge 
• This opposes the field created by the bias voltage on the contact 
• Must keep impurity very low or will not be able to collect the photo charge 
• Technically, to collect photo charge, the field needs to  
deplete the IR-active layer of all other free charge carriers 
• Depleted depth w depends on bias voltage Vb, blocking  
layer thickness tB, and acceptor impurity concentration NA 
• Vb  is limited to avoid avalanching of charge carriers, creating excess noise 
• MIRI detectors have 1.5 X 1012 acceptors cm-3, approaching the limit for good detectors 
 

• Summary of the contents of a 25 µm X 25 µm X 35 µm (deep) MIRI detector volume: 
 
 
 
 
 

• The statistical fluctuations in acceptor numbers actually contribute to the 
nonuniformity of an array! 
 

Silicon atoms 1 X 1015 

Arsenic atoms 1 X 1010 

Acceptors < 4 X 104 

Only Works with Exquisite Control of Impurities 



Detectors Meeting These Requirements Behave as Expected 

• Blue squares are 
measured response 
• Line is theoretical fit 
• Theory is updated 
from 1985 original 
papers 
• Includes diffusion of 
charge carriers from 
production sites 
• Critical to account 
for low-bias behavior 
• Rieke et al. 2015, 
PASP, 127, 665 for 
details  

fully 
depleted 
IR layer 

onset of avalanche gain 

increasing 
depletion 
of IR layer 
with 
increasing 
bias/field 

• Original theory developed in ∼ 1985 (Petroff & Stapelbroek) , when NA  > 1013 cm-3 and 
consequently IR-active layers were perhaps 15 µm thick 
• Still valid, but advances in detectors expose some shortcomings 
• Lower right shows expected response vs. bias voltage, Vb 



Quantum Efficiency is High 

uncoated 

AR at 16 µm 

AR at 6 µm 



Overall Properties are Excellent 

Format 1024 X 1024 

Wavelength range 5 – 28 µm 

Operating temperature < 6.7 K 

Pixel size 25 µm 

IR layer thickness 35 µm 

As doping 7 X 1017 cm-3 

Acceptor concentration 1.5 X 1012 cm-3 

Read noise 14 e rms 

Dark current 0.2 e/s 

Quantum efficiency > 60% 

Nominal bias 2.6 V 

Well capacity 250,000 e 



Arrays Are Ready for Launch 
• Array development at JPL, under leadership 
of Mike Ressler and Kalyani Sukhatme 
• Flight packaging to right 
• Mounted and aligned in instrument (housing 
below) 
• Instrument delivered 
• JWST instrument package has completed 
final cryo test 



Although These Arrays Are Great, They are Not Quite Perfect 

• Short wavelength (5 – 8 µm) shows cross artifact 
• MIRI array to left from test campaign, IRAC array from space to right 
• Root cause is poor absorption of Si:As at these wavelengths 

Future development of HgCdTe may make it the detector material of choice in this region. 



Nonetheless, detectors for 1 – 28 µm are superb!! 

• Low noise: < 15 electrons rms 
• Low dark current: << 1 e/s 
• High quantum efficiency: > 60% 
• Large format arrays: > 1 Mpixel 

• Fill factor ∼ 100% 
• Low crosstalk, ∼ 2% 

• Well-behaved photometrically – with suitable data pipeline processing  

This is a recent technological development: 40 years ago the best we had was 
single pixels, each 1000 times less sensitive! 



The Promise of JWST 



Background limit  has stopped sensitivity gains from the ground. 





 JWST finally provides a large and cold aperture for 
the mid-IR, delivering sub-arcsec resolution even at 
25 µm. 

Previous space telescopes were small with low angular resolution 



JWST and Its Instruments 

• With JWST, IR astronomy will have doubled its “astronomical capability*” every 10 
months for 50 years!!! 
 

• These gains are powered by 1.) putting cryogenic telescopes into space; and 2.) developing 
infrared arrays with the performance to take advantage of the space environment 
 

• JWST combines this potential with sophisticated instrumentation 
• NIRSpec: multi-object, integral field, and long slit spectroscopy, spectral resolutions of 
λ/∆λ = 100, 1000, and 2700, uses two 5 µm cutoff HgCdTe arrays 
• NIRCam: Imager and coronagraph (with some spectroscopic capability) with 10 
square arcmin field, operated from 0.6 to 5 µm with short and long wavelength 
channels; uses eight 2.5 µm cutoff and two 5 µm cutoff HgCdTe arrays 
• NIRISS: slitless and single object spectroscopy 1 to 3 µm, nonredundant mask 
interferometry 3.8 -4.8 µm; uses one 5 µm cutoff HgCdTe array 
• MIRI: imaging, coronagraphy, low and high resolution spectroscopy from 5 to 29 µm; 
uses three Si:As IBC arrays 

• More information at (among other sites): http://www.stsci.edu/jwst/instruments 

* Astronomical capability is a metric proportional to the integration time for a survey. It goes 
as the number of pixels divided by the detection limit per pixel squared (Bahcall 1990) 



NIRSpec Key Features 

• Silicon carbide optical bench and 
optics 
• All reflective design 
• Microshutter arrays that allow 
multi-object spectroscopy, 0.6 – 5 
µm 



NIRCam Key 
Features 

• Two identical cameras 
provide high reliability  

• Critical because 
NIRCam does 
wavefront sensing 

• Dichroic division into 
short and long 
wavelengths supports 
high observing efficiency, 
0.6 – 5 µm 
• Extensive coronagraphic 
capabilities 



NIRISS Key Features 
• Combined with guide camera 
• Nonredundant interferometric 
mask provides highest possible 
resolution at 3.8 – 4.8 µm 
• Slitless grisms give efficient 
spectroscopy over entire field of 
view, 1 – 2.5 µm 

• Orthogonal grisms reduce 
spectral overlap 



MIRI Key Features 
• Cooled to < 6.5 K with cryocooler 
• Combines imaging, coronagraphy, 
low and high resolution 
spectroscopy, 5 – 28.5 µm 
• Highly efficient IFU spectrometer 
– covers 5 – 28.5 µm at λ/∆λ ∼ 
2500 in three exposures 
• 4-quadrant phase masks provide 
small inner working angle 
coronagraphy 
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