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Topics
* Near-infrared (0.6 —5 um) detector arrays in HgCdTe

* Mid-infrared (5 — 28 um) detector arrays in Si:As

e Use of these devices in JWST* instruments

* The James Webb Space Telescope is a 6.5-m cooled (40K) telescope to be
launched in 2018, built as a collaboration among NASA and the European and
Canadian Space Agencies.



JWST Near-Infrared Arrays Use HgCdTe Photodiodes
provided by Teledyne Imaging Systems
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Why use photodiodes? . 4kT df
* Need high resistance to suppress Johnson noise Iy = R

* At the diode junction, impurity charge carriers migrate to fill bonds
 Creates a depletion region with no free charge carriers

* Also results in a contact potential — a voltage that sweeps any free charge
carriers across the junction region -- ~ 0.4 V for 2.5 um detector

* Bandgap is energy needed to break a bond in the crystal — as in process of
photon detection



Operation of a HgCdTe Photodiode Pixel

* For infrared detection, need small
bandgap material!

* HgCdTe grown by molecular beam
epitaxy (MBE): BGof 0.7—-0.1 eV
 After hybridized to the readout (for
strength) the substrate is removed
for good quantum efficiency (QE) at
short wavelengths

* Photon is absorbed in n-type layer
if its energy is greater than the
bandgap energy

* Photon absorption frees an
electron and creates a hole

* Hole diffuses until gets swept
across the junction by the contact
potential

» Cap layer can have larger band gap
to repel holes, pushing them toward
junction

e Qutput to amplifier at metallized
contact
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Quantum Efficiency
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Arrays Are Buttable on Three Sides

Arrays in all three near-IR instruments, fully tested and ready for launch
Flight packaging for NIRCam at U. of Arizona under Rick Schnurr and Ken Don



Overall Properties are Excellent

Format 2048 X 2048
Wavelength range 0.6-2.5 um
Operating temperature <80K

Pixel size 18 um

Read noise 6erms
Dark current ~0.002 e/s
Quantum efficiency > 80%
Nominal bias 0.25V

Well capacity 90,000 e



Spectacular Performance of HgCdTe Can Be
Maintained with 5um Cutoff Detectors

Cutoff Dark current | Read noise Longer wavelengths by changing x in
wavelength | (e/s) (e rms) Hg,, Cd, Te
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HgCdTe Technology Can Be Pushed to Somewhat

Longer Wavelengths
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But There Is a Limit!

e Tests are about to begin on a 13 um cutoff array, operating at ~ 30K (Judy
Pipher and Craig McMurtry, private communication)
* But performance is not going to approach that with 2.5 um devices
e There are three issues
* Process control for accurate bandgap energy becomes very critical
(below right)
* Material becomes soft and fragile

 Benefit from diode 100
junction decreases 0 |
with decreasing 2 80 Hg,., Cd, Te
bandgap* g 70
€ 60 }
< 50 |
*Contact potential is E a0 b
proportional to bandgap % 30 L
and hence inversely § 0 L
proportional to cutoff
wavelength! The internal 10 r

diode field is proportional to 0 ! ! : ' :
the contact potential. 0.15 0.2 0.25 0.3 0.35 0.4 0.45




missing extra

electrons electrons Solution: Use Extrinsic
(doped) Material

* The missing bonds (to left) require
far less energy to free charge
carriers

* But the impurity levels need to be
low to limit dark current, so the
photon absorption is not efficient

* Detector might be as to the right épnon:m

* Must be operated very cold
e Large (for good absorption)

* Need high resistance to suppress Johnson

noise i, 4kT df =
17 =—
] . transparent
e Result is very Iong RC time constant front

contact

* Example: 20 X 20 um pixel, 500 um thick,

dark current 30 e/s will have T ~ 100 s!

* This leads to prompt (from charge carrier }
drift) response and slow (from RC {
adjustment in detector to changes v
* And a bunch of really challenging

calibration issues oy

contact




ceramic detectors  readout
Nonetheless: cable |
molybdenum
32 X 32 Ge:Ga
Detector Array
for MIPS on
Spitzer

This is pretty
cumbersome —is
there some other
approach, at least
for wavelengths
not too far beyond
10 um?



Si:As Impurity Band Conduction Detectors

 Carried on transparent silicon substrate

* High resistance is supplied by blocking layer of much purer material

e Electric field (to far right grey scale) imposed by contact penetrates IR-active layer and
causes photoelectrons to drift to contact

* Readout by amplifier-per-detector, similar to HgCdTe arrays

» We will discuss this detector type with specific reference to the MIRI/JWST devices*

Buried
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* Arrays made by Raytheon Vision Systems & have strong heritage to those used in IRAC/Spitzer



Low Dark Current Because Blocking Layer Has No Impurity Band

* Electrons must be elevated to conduction band to get to contact
* This sets limit on impurity concentration in IR-active layer, to keep band narrow enough
* MIRI detectors have 7 X 1017 As cm™3, approaching the limit for good detectors
* About 100 times higher than is permissible without a blocking layer
* Infrared active layer can be only 30-35 um thick with good absorption
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Only Works with Exquisite Control of Impurities

* Arsenic is a donor impurity; acceptor impurities in IR layer produce space charge
* This opposes the field created by the bias voltage on the contact

* Must keep impurity very low or will not be able to collect the photo charge
 Technically, to collect photo charge, the field needs to

deplete the IR-active layer of all other free charge carriers w =
* Depleted depth w depends on bias voltage V,, blocking

layer thickness t;, and acceptor impurity concentration N,

* V, is limited to avoid avalanching of charge carriers, creating excess noise

* MIRI detectors have 1.5 X 1012 acceptors cm3, approaching the limit for good detectors

1/2

2EpE -
00 ¥, |+ rg] — tg

q Ng

* Summary of the contents of a 25 um X 25 um X 35 um (deep) MIRI detector volume:

Silicon atoms 1X10%
Arsenic atoms 1 X 1010
Acceptors <4X10%

* The statistical fluctuations in acceptor numbers actually contribute to the
nonuniformity of an array!



Detectors Meeting These Requirements Behave as Expected

* Original theory developed in ~ 1985 (Petroff & Stapelbroek) , when N, > 10! cm3 and
consequently IR-active layers were perhaps 15 um thick

» Still valid, but advances in detectors expose some shortcomings

* Lower right shows expected response vs. bias voltage, V,

* Blue squares are
measured response

* Line is theoretical fit
* Theory is updated
from 1985 original
papers

* Includes diffusion of
charge carriers from
production sites

e Critical to account
for low-bias behavior
* Rieke et al. 2015,
PASP, 127, 665 for
details
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Overall Properties are Excellent

Format

Wavelength range
Operating temperature
Pixel size

IR layer thickness

As doping

Acceptor concentration
Read noise

Dark current

Quantum efficiency
Nominal bias

Well capacity

1024 X 1024
5-28 um
<6.7K

25 um

35 um

7 X107 cm?3
1.5 X10*?2 cm?3
14 e rms

0.2 e/s

> 60%

2.6V
250,000 e



, cover/baffle
sensor chip

Arrays Are Ready for Launch assembly

attachment foot

* Array development at JPL, under leadership
of Mike Ressler and Kalyani Sukhatme

* Flight packaging to right

* Mounted and aligned in instrument (housing
below)

* Instrument delivered

e JWST instrument package has completed
final cryo test . cable

motherboard

FPH electrical
interfaces

Thermal
strap
interface
Detector
array
sensitive
area

interface




Although These Arrays Are Great, They are Not Quite Perfect

* Short wavelength (5 — 8 um) shows cross artifact
* MIRI array to left from test campaign, IRAC array from space to right
* Root cause is poor absorption of Si:As at these wavelengths

Future development of HgCdTe may make it the detector material of choice in this region.



Nonetheless, detectors for 1 —28 um are superb!!

e Low noise: < 15 electrons rms
e Low dark current: << 1 e/s
* High quantum efficiency: > 60%
 Large format arrays: > 1 Mpixel
* Fill factor ~ 100%
e Low crosstalk, ~ 2%
* Well-behaved photometrically — with suitable data pipeline processing

This is a recent technological development: 40 years ago the best we had was
single pixels, each 1000 times less sensitive!



The Promise of JWST
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Background limit has stopped sensitivity gains from the ground.
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limiting flux density (Jy)
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Previous space telescopes were small with low angular resolution

Aperture vs. Time, mid-IR Space Telescopes
700

JWST finally provides a large and cold aperture for
600 the mid-IR, delivering sub-arcsec resolution even at
25 um.
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JWST and Its Instruments

e With JWST, IR astronomy will have doubled its “astronomical capability*” every 10
months for 50 years!!!

* These gains are powered by 1.) putting cryogenic telescopes into space; and 2.) developing
infrared arrays with the performance to take advantage of the space environment

* JWST combines this potential with sophisticated instrumentation
* NIRSpec: multi-object, integral field, and long slit spectroscopy, spectral resolutions of
A/AN =100, 1000, and 2700, uses two 5 um cutoff HgCdTe arrays
* NIRCam: Imager and coronagraph (with some spectroscopic capability) with 10
square arcmin field, operated from 0.6 to 5 um with short and long wavelength
channels; uses eight 2.5 um cutoff and two 5 um cutoff HgCdTe arrays
* NIRISS: slitless and single object spectroscopy 1 to 3 um, nonredundant mask
interferometry 3.8 -4.8 um; uses one 5 um cutoff HgCdTe array
* MIRI: imaging, coronagraphy, low and high resolution spectroscopy from 5 to 29 um;
uses three Si:As IBC arrays

* More information at (among other sites): http://www.stsci.edu/jwst/instruments

* Astronomical capability is a metric proportional to the integration time for a survey. It goes
as the number of pixels divided by the detection limit per pixel squared (Bahcall 1990)



Micro Shutter

Array Refous — ceonics  NIRSpec Key Features

Mechanism
ThMA

Coupling Optics (with
Pick-off mirror
underneath)

Filter Wheel

Collimator TMA
Camera TMA

Calibration

Mirror 1
Mounting Frame ?ctwe MEA Aned
Focal Plane Integral T
Assembly Fold Field Unit Calibration
Mirror Assembly Fixed Slits
and
IFU Aperture

« Silicon carbide optical bench and 203 e
optics
* All reflective design
e Microshutter arrays that allow A
multi-object spectroscopy, 0.6 — 5 = =
1m Detector Array 36

Direction of Dispersion



: Short wave camera
Light from OTE | L. e Jens group NIRCam Key

Collimator
lens group

Pupil imaging lens ~ * Two identical cameras
assembly provide high reliability

Dichroic
beamsplitte X _ g e Critical because
Coronagraph - _ e NIRCam does

Short wave filter wavefront sensing
wheel assembly . pichroic division into
short and long

occulting masks

?! Short wave focal wavelengths supports
FOcHs e A 7 plane housing high observing efficiency,
alignment &/
mechanism 2K 0.6—5pum
DR Long wave focal * Extensive coronagraphic
Long wave filter Long wave plane housing capabilities

wheel assembly camera lens

5" x 5" ND squares
20" (~12 mm)

+

HWHM=2,D HWHM=6,D

HWHM = 0.40” HWHM = 0.64" HWHM = 0.82" HWHM, = 0.58” HWHM, = 0.27”
(6A/D @ 2.1 pm) (6A/D @ 3.35 um) (6A/D @ 4.3 um) (40/D @ 4.6 pm) (40D @ 2.1 pm)



NIRISS Key Features

* Combined with guide camera
* Nonredundant interferometric
mask provides highest possible
resolution at 3.8 —4.8 um
* Slitless grisms give efficient
spectroscopy over entire field of
view, 1 -2.5 um
* Orthogonal grisms reduce
spectral overlap

DETECTOR ASSEMBLY

MAIN BEHCH

FIHE FOCUS MECHAHISM
AHD FOLD MIRROR

* A spectrum for every source in the field of view.
* Not restricted




- ), Spectrometer optics MIRI Key Features

 Cooled to < 6.5 K with cryocooler
* Combines imaging, coronagraphy,
low and high resolution
spectroscopy, 5 —28.5 um

* Highly efficient IFU spectrometer
input-optics and —covers 5—28.5 um at A/AA ~
°°"b"°(*1'5'};;" ere = WWANE, . & 2500 in three exposures

p— M e 4-quadrant phase masks provide
small inner working angle

deck coronagraphy
[~ IFU Image i Channel 4 | ves« NN
Channe] 2 / = _— Conventional Mask Phase Shifting Mask

/ Slicer
/

Field
AT A Amplitude

/\ Superposition
~—/ N\

. Channel 3
Long Wavelength Intensity M
Focal Plane Module — M\ _

Dichroic/ grating
wheel
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