A beam hodoscope for ion therapy monitoring by means of secondary radiations

Jochen Krimmer¹, D. Dauvergne^{1,2}, E. Testa¹

¹IPNL Lyon ¹LPSC Grenoble

607. Haereus Seminar 17/02/2016 Bad Honnef

Introduction

hadrontherapy = tumor treatment with protons or carbon ions

conventional radiotherapy vs hadrontherapy

[D. Schardt Rev. Med. Phys. 2010]

- Bragg peak
- higher RBE relative biological effectiveness

The Heidelberg Ion Therapy center (HIT)

[Th. Haberer Cern Accelerator School 2012]

Hadrontherapy worldwide

- ► 55 centers in operation
- 34 centers under construction
- 16 centers in planning phase
- ► strong growth in the number of centers [http://www.ptcog.ch/]

Hadrontherapy: sensitivity to range uncertainties

[Knopf et al. Phys. Med. Biol. 2013]

- ► safety margins (≈ 3 % + 1.2 mm) [H. Paganetti PMB 2012]
 - ⇒ full potential not yet exploited
- ► ⇒ online monitoring highly desired

J. Krimmer (IPNL)

イロト イヨト イヨト イヨト

Nuclear reactions phases and products

- projectile-like and target-like fragments
 e.g. β⁺ emitters: ¹¹C, ¹⁵O, ...
 ⇒ PET monitoring (offline)
- ► prompt γ-rays, neutrons, light charged particles ⇒ real-time monitoring
- high probability (for ranges ~10 cm) ~10% for protons, ~40% for carbons

PET monitoring

- detection of gammas (positron annihilation)
- activity distributions
- p: target fragments
- ¹²C: from projectiles
- biological washout

[Enghardt et al. NIM A 2004]

Prompt secondary radiation for ion range monitoring emission yields (Geant4 9.4) typical treatments (PBS)

	number of ions	
	(distal slice)	
	proton	carbon
energy slice	$\sim 10^{10}$	$\sim 10^{8}$
single spot	$\sim 10^8$	$\sim 10^{6}$

[Krämer PMB 2000], [Grevillot PMB 2011], [Smeets PMB 2012]

- correlation between ion range and nuclear reaction depth profile
- radiation for real-time monitoring of the ion range:
 - prompt γ-rays (energy up to ~10 MeV
 - light charged particles (mainly from projectile fragmentation)

Hadrontherapy: Context

Beam parameters

- proton therapy: cyclotron (e.g IBA C230)
 - bunch length: 2 ns
 - time between bunches: 10 ns
 - 200 protons per bunch
- carbon ion therapy: synchrotron (HIT/CNAO)
 - bunch length: 20-40 ns
 - time between bunches: 200 ns
 - 10 ions per bunch

Specifications for beam monitoring

- count rate: 100 MHz
- time resolutions: 1 ns
- spatial resolution: 1 mm
- irradiated matrix: 15×15 cm²

< 日 > < 同 > < 回 > < 回 > < □ > <

Hadrontherapy: real-time monitoring

Common device: beam tagging hodoscope

- ▶ goals:
 - -position resolution 1 mm -time resolution 1 ns -count rate 10⁸ 1/s
- array of scintillating fibers (1×1 mm² BCF 10/12)

- prototypes: 2×32 and 2×128 fibers
- readout: optical fibers FORETEC
- coupling to multianode PM H-8500

Hodoscope: performance tests

- ► GANIL: 75 MeV/u ¹³C, IPN Orsay: 25 MeV protons
- ► time reference: cyclotron HF ⇒ time resolution 1 ns FWHM

- ► H-8500 ⇔ MCP-PMT
- max. rate > 10 MHz, for H-8500 at 800 V
- ► MCP-PMT at 2200 V ⇒ less performant

Hodoscope: distribution of signals

- distribute signals from neighboring fibres to different PMs
 increase of maximum count rate
- read fibres from both sides:
 - \Rightarrow increase of efficiency
 - \Rightarrow timing independent on hit position

< ロ > < 同 > < 回 > < 回 >

$$t_A = \frac{x}{c}, \ t_B = \frac{L-x}{c}$$
$$t = \frac{1}{2} (t_A + t_B) = \frac{1}{2} \frac{L}{c}$$

Hodoscope: Test bench for multianode PMs

- 8 PMs H-8500 to characterize
- 64 channels each
- LED on translation table
- reference PM to compensate for variations
- automatic measures via LabView
- variation in gain for different pixels factor 2-3

Hodoscope: front end electronics

- goals: rate 10⁸ 1/s, time information, analog output (monitoring of fiber aging)
- first version of ASIC:
 - current comparator
 - CSA
 - S. Deng et al. NIM A 695 (2012)
- second version of ASIC:
 - inclusion of time stamper
 - 160 MHz clock + DLL
 - 32 to 5 Gray encoder

 ASIC + DAQ card tested final version in production

Fast DAQ system: µ-TCA acquisition diagram

[C. Abellan ICTR-PHE 2014]

μ -TCA crate

AMC board (CPPM)

(a)

- front-end electronics: IPNL Lyon, LPC Clermont
- AMC board: CPPM Marseille

Alternative approach: Diamond detectors

MONIDIAM project (LPSC Grenoble)

- fast response, high count rate capability
- radiation hardness
- production: PECVD (Plasma Enhanced Chemical Vapor Deposition)
- maximum size:
 - $50 \times 50 \text{ mm}^2$ polycrystalline, $7 \times 7 \text{ mm}^2$ monocrystalline
- tests: ²⁴¹Am source (alpha 5.4 MeV) 95 MeV/u ¹²C at GANIL
- perspectives: ASIC development, thinning to 200-300 μm

prompt- γ detection with collimated detectors

prompt- γ detection with collimated detectors

prompt- γ detection with collimated detectors

target

- on a moving table
- ▶ PMMA, H₂O, ...

collimator

material: tungsten, Pb

scintillation detector

LaBr₃, LYSO, BGO, ...

Time-of-Flight (TOF) measurements

- reduction of neutron background
- time reference:
 - monitor detector intercepting the beam (synchrotron)
 - accelerator HF (cyclotron)

prompt- γ profiles: heterogeneous targets 95 MeV/u ¹²C (GANIL)

▶ influence of heterogeneities close to Bragg peak
 ⇒ change in ion range

[M. Pinto et al. Med. Phys. 2015]

prompt- γ profiles: multislit collimator

¹³C 75 MeV/u (GANIL)

[J.K. et al. JINST 2015]

- carbon beams at GANIL and GSI
- ▶ prompt-γ profiles
- ► inter-detector scattering ⇒ contribution < 10 %</p>

Collimated cameras: multislit (IPNL)

- collimator optimized for falloff retrieval precision
 ⇒ expected σ ~ 1 mm for 10⁸ protons (= 1 spot)
 [M. Pinto et al. PMB 2014]
- 20 cm height (2 layers)
- BGO detectors

Compton camera (TOF): principle

- ► idea: replace passive by *electronic* collimation ⇒ potential increased efficiency
- 3 D information available
- here: line / cone intersection
- components: hodoscope, scatterer, absorber

Compton camera: components

beam tagging hodoscope

scatter detectors

- streaked BGO
 64 pseudo pixel
- total 96 crystals
- LPC Clermont

IPNL Lyon, LPC Clermont, CPPM Marseille

イロト イヨト イヨト イヨト

[J.K. et al. NIM A 2015]

Components: scatter detector

- double sided silicon strip detectors
- size: 90×90×2 mm³
- 7 planes in total
- 2×64 strips (p- and n-side)
- Front-end electronics ASICs (8 ch.), low noise, 1×10⁵ cts/s slow (1 µs) and fast (15 ns) shaping
- cooling system

Scatter detector: leakage currents

J. Krimmer (IPNL)

Scatter detector: front end electronics specifications

- dynamic: 3.10³ 3.10⁶ e⁻
- count rate: 10⁵ 1/s
- low noise: 120 e⁻ RMS (1 keV FWHM)
- shaping: 15 ns and 1 μs
- selection: electron / holes

scheme of ASIC for SSD:

⇒ switched system

J. Krimmer (IPNL)

Components: absorber

- streaked BGO crystals 35×38×30 mm³ read by 4 PMs
- ► 8×8 (pseudo)-pixel, 96 crystals in total
- energy resolution 17% at 511 keV, time resolution 2 ns
- detector assembly and readout electronics: LPC Clermont
- position reconstruction via centroid

イロト イヨト イヨト イヨト

proton IVI Simulations (head like phantom) [P. Henriquet et al. PMB 2012]

- various ¹²C energies
- fit of error function
- Inflection Point Position
- correlation with energy
- ion range monitoring
- millimetric precision for homogeneous target, single-spot basis (PBS)

proton IVI measurements: homogeneous targets

- CMOS detectors: MIMOSA 26 IPHC Strasbourg
 massurement at HI
 - measurement at HIT

[V. Reithinger et al. PTCOG 2013]

proton IVI measurements: heterogeneous targets

- measurements at HIT
- target: PMMA cylinder with inserts "bone" and "air"
- normalization to integrals

■ "air" inserts at 3 positions ⇒ dip at insert position

[R. Rescigno ICTR-PHE 2014]

Summary

beam tagging hodoscope

- scintillating fibers
- diamond detectors
- ion therapy monitoring
 - prompt- γ detection: collimated- and Compton camera
 - charged particles: proton IVI

Outlook

- towards clinical application
- realistic phantoms
- ► improvement of simulations ⇒ prediction of signals

thank you very much for your attention

collaborators / institutions

- IPNL Lyon
- CREATIS Lyon
- IPN Orsay
- LPC Clermont
- CPPM Marseille
- IPHC Strasbourg

- CAL Nice
- GANIL Caen
- HIT Heidelberg
- GSI Darmstadt

< 日 > < 同 > < 回 > < 回 > < □ > <

- WPE Essen
- IBA

acknowledgements

France Hadron, ANR, FP7 Envision, FP7 Entervision, FP7 Ulice, LabexPrimes, PRRH

backup: proton radiography (proton CT)

メロト メポト メヨト メヨト 二日

backup: Time-of-Flight PET

 $\Delta x = c \Delta t/2$ 100ps resolution \Leftrightarrow 1.5 cm

► use of TOF information ⇒ increased SNR

backup: In Beam TOF-PET

- small activity produced, in comparison to diagnosis
- short half lifes: ¹¹C (20 min.), ¹⁵O (2 min.),...
- preferred solution: in beam TOF-PET with sub-ns time resolution
- study of configurations and detection methods
 - scintillator-based TOF-PET
 - RPC-based TOF-PET (MRPC)
- Coincidence Resolving Time CRT in the order of 200 ps

[Amaldi et al. NIM A 2015]

backup: Collimated cameras: knife-edge (IBA)

- principle: slit-hole camera
 [Bom PMB 2012]
- prototype optimization: falloff retrieval precision
 1 mm for a distal spot [Smeets PMB 2012]
- tests with prototype and IBA C230 cyclotron
 [Perali PMB 2014]
- investigations with anthropomorphic phantoms in progress