Indico "indico.scc.kit.edu" will be now avilable on " indico.kit.edu".

Big Data Science in Astroparticle Research - HAP Workshop

Europe/Berlin
RWTH Aachen University SuperC

RWTH Aachen University SuperC

RWTH Aachen University Templergraben 57, 52062 Aachen phone:0241 8090801
Andreas Haungs (KIT), Martin Erdmann
Description

Castle Erlangen (© Erich Malter)

Poster High-res (20 MB)
Poster Low-res
Participants
    • Arrive
    • Deep Learning
      • 1
        Welcome and organizational matters
        Speaker: Prof. Martin Erdmann (RWTH Aachen University)
        Slides
      • 2
        Tutorial Deep Networks: Introduction, Fully-Connected, Convolutional Architectures
        Speaker: Mr Yannik Rath (RWTH Aachen University)
        Slides
    • Coffee
    • Deep Learning
      • 3
        Tutorial on Adversarial Generative Networks, Wasserstein distance
        Speaker: Mr Jonas Glombitza (RWTH Aachen University)
        Slides
    • Deep Learning
      • 4
        Welcome Message of the Vice-Rector for Research and Structure
        Speaker: Prof. Rudolf Mathar (RWTH Aachen University)
      • 5
        DeepJet: jet classification with the CMS experiment
        Speaker: Dr Markus Stoye (CERN)
        Slides
      • 6
        Application of machine learning methods to H.E.S.S. data analysis
        Speaker: Dr Idan Shilon (ECAP University Erlangen)
        Slides
      • 7
        Event Reconstruction in IceCube using Deep Learning Techniques
        Speaker: Mr Mirco Huennefeld (TU Dortmund)
        Slides
    • Coffee
    • Deep Learning
      • 9
        Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks
        Speaker: Mr Lukas Geiger (RWTH Aachen University)
        Slides
      • 10
        HexagDLy - Hexagonal Convolutions with PyTorch
        Speaker: Mr Tim Lukas Holch (Humboldt University Berlin)
        Slides
      • 11
        Deep machine learning implementation in FPGA
        Speakers: Dr Michele Caselle (KIT), Mr Weijia WANG
        Slides
    • Lunch
    • Deep Learning
      • 12
        Making Deep Neural Networks Transparent
        Speaker: Dr Wojciech Samek (Fraunhofer Heinrich Hertz Institute Berlin)
        Slides
      • 13
        Denoising radio traces with autoencoder on Tunka-Rex experiment
        Speaker: Dr Dmitriy Kostunin (IKP KIT Karlsruhe)
        Slides
      • 14
        Deep Neural Network searching for an air shower radio signal
        Speaker: Radomir Smida (Karlsruhe Institute of Technology (KIT))
        Slides
    • Coffee
    • Deep Learning: 1-2 Transparencies
      • 15
        Investigating deep convolutional autoencoders to mitigate systematic differences between data and simulations
        Speaker: Dr Stefan Geißelsöder (ECAP, FAU Erlangen)
        Slides
      • 16
        Using Deep Learning to optimise a SUSY search at CMS
        Speaker: Dr Adam Elwood (DESY Hamburg)
        Slides
    • Open Data, Data Centers, Computing Technology
      • 17
        Introduction to Open Data
        Speaker: Prof. Uli Katz (ECAP / Univ. Erlangen)
        Slides
      • 18
        FACT Open Data Release
        Speaker: Mr Maximilian Nöthe (Herr)
        Slides
    • Conference Dinner
    • Open Data, Data Centers, Computing Technology
      • 19
        Research Data Alliance
        Speaker: Dr Peter Wittenburg (Max Planck Institute for Psycholinguistics Nijmegen, NL)
        Slides
      • 20
        Big scientific data and Data Science
        Speaker: Prof. Tony Hey (Rutherford Appleton Laboratory, UK)
        Slides
    • Coffee
    • Open Data, Data Centers, Computing Technology
      • 21
        Progress on analysis and data centre for astroparticle physics
        Speaker: Dr Andreas Haungs (KIT)
        Slides
      • 22
        Concrete goals for (Astro-)particle progress related to Big Data Science
        Speaker: Prof. Alexander Schmidt (RWTH Aachen University)
        Slides
    • Discussion on perspectives and common efforts
      • 23
        Discussion
        Speakers: Dr Andreas Haungs (KIT), Prof. Martin Erdmann (RWTH Aachen University)
        Slides
    • Depart